User talk:Dmitrii Kouznetsov/Analytic Tetration: Difference between revisions
imported>Dmitrii Kouznetsov |
imported>Dmitrii Kouznetsov |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Henryk Trappmann 's theorems== | ==Henryk Trappmann 's theorems== | ||
This is approach to the Second part of the Theorem 0, which is still absent in the main text. | |||
Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458 | Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458 | ||
===Theorem T1.=== | ===Theorem T1. (about Gamma function)=== | ||
'''Let''' <math>~F~</math> be [[holomorphic]] on the right half plane | '''Let''' <math>~F~</math> be [[holomorphic]] on the right half plane | ||
'''let''' <math>~F(z+1)=zF(z)~</math> for all <math>~z~</math> such that <math>~\Re(z)>0~</math>.<br> | '''let''' <math>~F(z+1)=zF(z)~</math> for all <math>~z~</math> such that <math>~\Re(z)>0~</math>.<br> | ||
Line 8: | Line 11: | ||
'''Then''' <math>~F~</math> is the [[gamma function]]. | '''Then''' <math>~F~</math> is the [[gamma function]]. | ||
===Theorem T2=== | '''Proof''', see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!) | ||
Consider function | |||
<math>~v=F-\Gamma~</math> on the right half plane, it also satisfies equation | |||
<math>~v(z+1)~=~z~v(z)~</math> | |||
Hence, | |||
<math>~v~</math> has a [[meromorphic]] continuation to | |||
<math>~\mathbb{C}~</math>; | |||
and the poles are allowed only at non–positive integer values of the argument. | |||
While <math>~v(1)=0~</math>, we have | |||
<math>~\lim_{z\rightarrow 0} z~v(z)=0~</math>, | |||
hence, <math>~v~</math> has a holomorphic continuation to 0 and also to each | |||
<math>~-n~</math>, | |||
<math>~n\in \mathbb{N} </math> by | |||
<math>~v(z+1)=z~v(z)~</math>. | |||
In the range | |||
<math>~ 1\le \Re(z) <2 ~</math>, | |||
<math>~v(z)~ </math> is pounded. It is because function | |||
<math>~ \Gamma ~ </math> is bounded there. | |||
Then <math>~v(z)~</math> is also restricted on <math>~\mathbb{S}~</math>, | |||
because <math>~v(z)!</math> and <math>~v(1-z)!</math> have the same values on | |||
<math>~\mathbb{S}~</math>. Now <math>~q(z+1)=-q(z)~</math>, hence <math>~q~</math> is bounded on whole <math>~\mathbb{C}~</math>, and by the | |||
[[Liouville Theorem]], <math>~q(z)=q(1)=0</math>. Hence, <math>~v=0~</math> | |||
and <math>~F=\Gamma~</math>. | |||
(end of proof) | |||
===Theorem T2 (about exponential)=== | |||
'''Let''' <math>~E~</math> be solution of | '''Let''' <math>~E~</math> be solution of | ||
<math>~ E(z+1)=b E(x)~</math>, | <math>~ E(z+1)=b E(x)~</math>, | ||
Line 32: | Line 65: | ||
<math>~q~</math> must be bounded too. | <math>~q~</math> must be bounded too. | ||
===Theorem T3=== | ===Theorem T3 (about Fibbonachi)=== | ||
'''Let''' <math>~\phi=\frac{1+\sqrt{5}}{2}~</math>. < | '''Let''' <math>~\phi=\frac{1+\sqrt{5}}{2}~</math>. <br> | ||
'''Let''' <math>~F(z+1)=F(z)+F(z-1)~</math> | '''Let''' <math>~F(z+1)=F(z)+F(z-1)~</math> | ||
'''Let''' <math>~F(0)=1~</math> | '''Let''' <math>~F(0)=1~</math> | ||
Line 41: | Line 74: | ||
'''Discussion'''. Id est, <math>~F~</math> is [[Fibbonachi function]]. | '''Discussion'''. Id est, <math>~F~</math> is [[Fibbonachi function]]. | ||
===Theorem T4=== | |||
===Theorem T4 (about tetration)=== | |||
====First intent to formulate==== | |||
'''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br> | '''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br> | ||
'''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> satisfies conditions | '''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> satisfies conditions | ||
Line 47: | Line 82: | ||
:<math>~F(z)~</math> is [[holomorphic function]], bounded in the strip <math>~|\Re(z)| \le 1 ~</math> . <br> | :<math>~F(z)~</math> is [[holomorphic function]], bounded in the strip <math>~|\Re(z)| \le 1 ~</math> . <br> | ||
'''Then''' <math> ~F_1=F_2~ </math> | '''Then''' <math> ~F_1=F_2~ </math> | ||
====Second intent to formulate==== | |||
(0) '''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br> | |||
(1) '''Let''' each of <math>~F_1~</math> and <math>~F_2~</math> is [[holomorphic function]] | |||
on <math>~\mathbb{C}^{\prime}=\mathbb{C}\backslash (-\infty,-2]</math>, | |||
satisfying conditions | |||
(2) <math> F(0)=1</math> | |||
(3) <math>~\exp_b(F(z))=F(z+1)~</math> for <math>\Re(z)>-2</math> | |||
(4) <math>~F~</math> is bounded on | |||
<math>~\mathbb{S}=~\{x+\mathrm{i} y|-2<x\le 1, y\in \mathbb{R} \}</math> | |||
'''Then''' <math> ~F_1=F_2~ </math> | |||
====Proof of Theorem T4==== | |||
=====Lemma 1===== | |||
(0) '''Let''' <math>~b> \exp(1/\mathrm e)~</math>. <br> | |||
(1) '''Let''' <math>~f~</math> be [[holomorphic function]] | |||
on <math>~\mathbb{C}^{\prime}=\mathbb{C}\backslash (-\infty,-2]~</math>, | |||
such that | |||
(2) <math> f(0)=1</math> | |||
(3) <math>~\exp_b(f(z))=f(z+1)~</math> for <math>\Re(z)>-2~</math> | |||
(4) <math>~f~</math> is bounded on | |||
<math>~\mathbb{S}=~\{x+\mathrm{i} y|-2<x\le 1, y\in \mathbb{R} \}~</math> | |||
'''Let''' <math>~ \mathbb{D} = ~\{x+\mathrm{i} y|-2<x, y\in \mathbb{R} \}~</math> | |||
'''Then''' <math>~ f( \mathbb{D} ) = \mathbb{C} ~ </math> | |||
=====Proof of Lemma 1===== | |||
=====Proof of theorem T4===== | |||
'''Henryk, I cannot copypast your proof here: I do not see, where do you use condition''' | |||
<math>~b>\exp( 1/ \mathrm{e} ) </math> | |||
? | |||
From Lemma 1, the ... | |||
====Discussion==== | |||
Such <math>~F~</math> is unique tetration on the base <math>~b~</math>. |
Latest revision as of 07:23, 29 September 2008
Henryk Trappmann 's theorems
This is approach to the Second part of the Theorem 0, which is still absent in the main text.
Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458
Theorem T1. (about Gamma function)
Let be holomorphic on the right half plane
let for all such that .
Let .
Let be bounded on the strip .
Then is the gamma function.
Proof, see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!)
Consider function on the right half plane, it also satisfies equation Hence, has a meromorphic continuation to ; and the poles are allowed only at non–positive integer values of the argument.
While , we have , hence, has a holomorphic continuation to 0 and also to each , by .
In the range , is pounded. It is because function is bounded there.
Then is also restricted on , because and have the same values on . Now , hence is bounded on whole , and by the Liouville Theorem, . Hence, and .
(end of proof)
Theorem T2 (about exponential)
Let be solution of , , bounded in the strip .
Then is exponential on base , id est, .
Proof. We know that every other solution must be of the form where is a 1-periodic holomorphic function. This can roughly be seen by showing periodicity of .
,
where is also a 1-periodic function,
While each of and is bounded on , must be bounded too.
Theorem T3 (about Fibbonachi)
Let .
Let
Let
Let
Then
Discussion. Id est, is Fibbonachi function.
Theorem T4 (about tetration)
First intent to formulate
Let .
Let each of and satisfies conditions
- for
- is holomorphic function, bounded in the strip .
Then
Second intent to formulate
(0) Let .
(1) Let each of and is holomorphic function on , satisfying conditions
(2)
(3) for
(4) is bounded on
Then
Proof of Theorem T4
Lemma 1
(0) Let .
(1) Let be holomorphic function on , such that
(2)
(3) for
(4) is bounded on
Let
Then
Proof of Lemma 1
Proof of theorem T4
Henryk, I cannot copypast your proof here: I do not see, where do you use condition
?
From Lemma 1, the ...
Discussion
Such is unique tetration on the base .