Zero-sum game: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Jitse Niesen
(A '''zero-sum game''' is an game (game theory) in which the sum of the payoffs for all the players is zero, whatever strategy they choose.)
 
mNo edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A '''zero-sum game''' is an [[game (game theory)|abstract game]] in which the sum of the payoffs for all the players is zero, whatever strategy they choose. The interests in a zero-sum game are diametrically opposed: a player can only gain at the expense of the other players. It is like dividing a cake, where one can only get more if an other gets less. In games that are not zero-sum, there is the possibility to cooperate and thus increase the size of the cake.
{{subpages}}
 
In [[game theory]], a '''zero-sum game''' is a game in which the sum of the payoffs for all the players is zero, whatever strategy they choose. The interests in a zero-sum game are diametrically opposed: a player can only gain at the expense of the other players. It is like dividing a cake, where one can only get more if another gets less. In games that are not zero-sum, there is the possibility to cooperate and thus increase the size of the cake.


For example, sports games are zero-sum, when considered on their own. The best result is to win and the worst is to lose, with a draw in between. When one side wins, the other side loses; this makes it a zero-sum game. However, when a series of games is played, then each individual game is not necessarily zero-sum. For instance, if in some competition both teams need only a draw to proceed to the next round and they do not get any advantages if they win, then they can cooperate and make sure that the game indeed ends in a draw.
For example, sports games are zero-sum, when considered on their own. The best result is to win and the worst is to lose, with a draw in between. When one side wins, the other side loses; this makes it a zero-sum game. However, when a series of games is played, then each individual game is not necessarily zero-sum. For instance, if in some competition both teams need only a draw to proceed to the next round and they do not get any advantages if they win, then they can cooperate and make sure that the game indeed ends in a draw.


Zero-sum games are easier to analyze than games that are not zero-sum. For instance, every zero-sum game has a [[Nash equilibrium]] if we allow [[mixed strategy|mixed strategies]]. A Nash equilibrium is when all players have chosen a strategy so that none of the players can increase their payoff by changing their strategy ''unilaterally''; it is natural to expect that "fair" outcomes of the games satisfy this condition. A mixed strategy is one in which a player does not commit to one strategy, but chooses randomly between two or more strategies. Furthermore, if a zero-sum game has more than one Nash equilibrium, then these equilibria have the same payoffs and so they are basically the same. Hence, a zero-sum game has a well-defined value to each of the players, namely their payoff in the equilibrium.
Zero-sum games are easier to analyze than games that are not zero-sum. For instance, every zero-sum game has a [[Nash equilibrium]] if we allow [[mixed strategy|mixed strategies]]. A Nash equilibrium is when all players have chosen a strategy so that none of the players can increase their payoff by changing their strategy ''unilaterally''; it is natural to expect that "fair" outcomes of the games satisfy this condition. A mixed strategy is one in which a player does not commit to one strategy, but chooses randomly between two or more strategies. Furthermore, if a zero-sum game has more than one Nash equilibrium, then these equilibria have the same payoffs and so they are basically the same. Hence, a zero-sum game has a well-defined value to each of the players, namely their payoff in the equilibrium.
[[Category:Suggestion Bot Tag]]

Latest revision as of 12:00, 10 November 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In game theory, a zero-sum game is a game in which the sum of the payoffs for all the players is zero, whatever strategy they choose. The interests in a zero-sum game are diametrically opposed: a player can only gain at the expense of the other players. It is like dividing a cake, where one can only get more if another gets less. In games that are not zero-sum, there is the possibility to cooperate and thus increase the size of the cake.

For example, sports games are zero-sum, when considered on their own. The best result is to win and the worst is to lose, with a draw in between. When one side wins, the other side loses; this makes it a zero-sum game. However, when a series of games is played, then each individual game is not necessarily zero-sum. For instance, if in some competition both teams need only a draw to proceed to the next round and they do not get any advantages if they win, then they can cooperate and make sure that the game indeed ends in a draw.

Zero-sum games are easier to analyze than games that are not zero-sum. For instance, every zero-sum game has a Nash equilibrium if we allow mixed strategies. A Nash equilibrium is when all players have chosen a strategy so that none of the players can increase their payoff by changing their strategy unilaterally; it is natural to expect that "fair" outcomes of the games satisfy this condition. A mixed strategy is one in which a player does not commit to one strategy, but chooses randomly between two or more strategies. Furthermore, if a zero-sum game has more than one Nash equilibrium, then these equilibria have the same payoffs and so they are basically the same. Hence, a zero-sum game has a well-defined value to each of the players, namely their payoff in the equilibrium.