Resistor: Difference between revisions
imported>Magnus Sundell No edit summary |
mNo edit summary |
||
(16 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | |||
The '''resistor''' is one of the basic components in electrical circuits. Resistors are used where the [[resistance]] of the circuit needs adjustment, typically for limiting the electrical [[current]] between two nodes. Resistors are also often used to create paths for direct current flow between circuit nodes; typical uses for this includes operational amplifier feedback or transistor biasing. The majority of resistors in a circuit have fixed resistance values, however [[potentiometer|potentiometers]] may be used to allow adjustment of the resistance. One typical application of potentiometers is volume control in audio players. | |||
== Function of resistors == | ==Function of resistors== | ||
The function of a resistor in a circuit is described by [[Ohm's | The function of a resistor in a circuit is described by [[Ohm's Law]] and dependends upon three variables: the resistance of the resistor, the [[voltage]] difference between its poles, and the flow of [[electron|electrons]] (current) through the resistor. If two of the three are known, the third can easily be calculated. | ||
Resistors are not polarized, meaning that they can be inserted into a circuit either way around. | Resistors are not polarized, meaning that they can be inserted into a circuit either way around. | ||
==Key properties of resistors== | |||
== Key properties of resistors == | |||
When choosing resistors for a circuit, parameters such as power rating, tolerance and temperature drift should be considered. | When choosing resistors for a circuit, parameters such as power rating, tolerance and temperature drift should be considered. | ||
The physical size of the resistor component directly affects how much heat generation it can withstand before sustaining damage. The resistor must be selected such that its maximum power rating is not exceeded, however | The physical size of the resistor component directly affects how much heat generation it can withstand before sustaining damage. The resistor must be selected such that its maximum power rating is not exceeded, however it is generally recommended to leave at least ten percent margin as well. Resistors are available as through-hole mounted components as well as surface mounted components. | ||
Resistors are specified with a nominal resistance value and a tolerance, often stated in percents. This tolerance states the maximum deviation of a single resistor from its nominal value. The resistance of two resistors are rarely precisely equal, but their values are both within a certain guaranteed interval, defined by the tolerance. Thus, resistors with low tolerance are often considered to be precision resistors. | Resistors are specified with a nominal resistance value and a tolerance, often stated in percents. This tolerance states the maximum deviation of a single resistor from its nominal value. The resistance of two resistors are rarely precisely equal, but their values are both within a certain guaranteed interval, defined by the tolerance. Thus, resistors with low tolerance are often considered to be precision resistors. Some applications may require closely matched resistors or resistors with tight tolerances to ensure optimal performance, however it is generally considered that properly designed electronic products will function properly given all possible resistance values within the selected tolerance. | ||
As the ambient temperature of a resistor fluctuates, so does the resistance of the resistor. The amount by which the resistance fluctuates is known as the temperature drift, and is often stated in ppm/Celsius or ppm/Fahrenheit. Regular resistors experienced increased resistance with rising temperature, and vice versa. There are also NTC (Negative Temperature Coefficient) resistors, whose resistance decreases with rising temperature, and vice versa. | As the ambient temperature of a resistor fluctuates, so does the resistance of the resistor. The amount by which the resistance fluctuates is known as the temperature drift, and is often stated in [[ppm]]/[[Celsius]] or ppm/[[Fahrenheit]]. Regular resistors experienced increased resistance with rising temperature, and vice versa. There are also NTC (Negative Temperature Coefficient) resistors, whose resistance decreases with rising temperature, and vice versa. | ||
==Combinations of resistors== | |||
== Combinations of resistors == | |||
Resistors may be combined either in series or in parallel, resulting in a total resistance dependent upon the individual resistances as well as the combination order. | Resistors may be combined either in series or in parallel, resulting in a total resistance dependent upon the individual resistances as well as the combination order. | ||
===Resistors in series=== | |||
=== Resistors in series === | |||
When connecting two or more resistors in series, the equivalent resistance becomes the sum of the individual resistances. Mathematically, this can be expressed as | When connecting two or more resistors in series, the equivalent resistance becomes the sum of the individual resistances. Mathematically, this can be expressed as | ||
:<math>R_{\mathrm{eq}} = \sum_{n=1}^N R_n</math> | |||
<math> | where <math>N</math> is the number of resistors connected in series. If <math>N</math> resistors with identical resistance <math>R</math> are connected in series, the equivalent resistance becomes | ||
If N resistors with identical resistance R are connected in series, the equivalent resistance becomes | |||
:<math>R_{\mathrm{eq}} = N \cdot R.</math> | |||
=== Resistors in parallel === | ===Resistors in parallel=== | ||
When two or more resistors are connected in parallel, the inverse of the equivalent resistance is equal to the sum of the inverses of the individual resistances. Mathematically, this is expressed as | When two or more resistors are connected in parallel, the inverse of the equivalent resistance is equal to the sum of the inverses of the individual resistances. Mathematically, this is expressed as | ||
:<math>\frac{1}{R_{\mathrm{eq}}} = \sum_{n=1}^N \frac{1}{R_n}</math> | |||
<math> | where <math>N</math> is the number of resistors connected in parallel. In the case of two resistors, the equivalent resistance can be calculated using the formula | ||
In the case of two resistors, the equivalent resistance can be calculated using the formula | |||
:<math>R_{\mathrm{eq}} = \frac{R_1 \cdot R_2}{R_1+R_2}.</math> | |||
If <math>N</math> resistors with identical resistance <math>R</math> are connected in parallel, the equivalent resistance is | |||
<math>R_{eq} = \frac{R}{N}</math> | :<math>R_{\mathrm{eq}} = \frac{R}{N}.</math> | ||
==Calculation examples== | |||
== Calculation examples == | |||
This section contains some examples of how to calculate the operation of resistors. | This section contains some examples of how to calculate the operation of resistors. | ||
===Calculating current=== | |||
=== Calculating current === | |||
If 10 volts of voltage is applied over a 100-ohm resistor, the current through the resistor will, according to Ohm's law, equal | If 10 volts of voltage is applied over a 100-ohm resistor, the current through the resistor will, according to Ohm's law, equal | ||
:<math>I = \frac{U}{R} = \frac{10\ \mathrm{V}}{100\ \mathrm{ohm}} = 0.1\ \mathrm{A} = 100\ \mathrm{mA}.</math> | |||
===Calculating voltage=== | |||
=== Calculating voltage === | |||
If a current of 1 mA flows through a 1-kilohm resistor, the voltage across the resistor becomes | |||
:<math>U = I \cdot R = 0.001\ \mathrm{A} \cdot 1000\ \mathrm{ohm} = 1\ \mathrm{V}.</math> | |||
=== Calculating resistance === | ===Calculating resistance=== | ||
If a current of 50 mA flows through a resistor when 6 volts of voltage is applied, the resistance equals | If a current of 50 mA flows through a resistor when 6 volts of voltage is applied, the resistance equals | ||
:<math>R = \frac{U}{I} = \frac{6\ \mathrm{V}}{50\ \mathrm{mA}} = 120\ \mathrm{ohm}.</math> | |||
===Calculating equivalent resistance=== | |||
=== Calculating equivalent resistance === | |||
If three resistors (R1 = 100 ohm, R2 = 200 ohm, R3 = 400 ohm) are connected in series, the equivalent resistance is | If three resistors (R1 = 100 ohm, R2 = 200 ohm, R3 = 400 ohm) are connected in series, the equivalent resistance is | ||
:<math>R_{\mathrm{eq}} = R_1 + R_2 + R_3 = 100\ \mathrm{ohm} + 200\ \mathrm{ohm} + 400\ \mathrm{ohm} = 700\ \mathrm{ohm}.</math> | |||
If the same resistors are connected in parallel, the equivalent resistance is | |||
:<math>\frac{1}{R_{\mathrm{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{100\ \mathrm{ohm}} + \frac{1}{200\ \mathrm{ohm}} + \frac{1}{400\ \mathrm{ohm}} = 0.0175\ \frac{1}{\mathrm{ohm}}.</math> | |||
so | |||
<math>\ | :<math>R_{\mathrm{eq}} = \frac{1}{0.0175}\ \mathrm{ohm} \approx 57\ \mathrm{ohm}.</math>[[Category:Suggestion Bot Tag]] |
Latest revision as of 11:00, 11 October 2024
The resistor is one of the basic components in electrical circuits. Resistors are used where the resistance of the circuit needs adjustment, typically for limiting the electrical current between two nodes. Resistors are also often used to create paths for direct current flow between circuit nodes; typical uses for this includes operational amplifier feedback or transistor biasing. The majority of resistors in a circuit have fixed resistance values, however potentiometers may be used to allow adjustment of the resistance. One typical application of potentiometers is volume control in audio players.
Function of resistors
The function of a resistor in a circuit is described by Ohm's Law and dependends upon three variables: the resistance of the resistor, the voltage difference between its poles, and the flow of electrons (current) through the resistor. If two of the three are known, the third can easily be calculated.
Resistors are not polarized, meaning that they can be inserted into a circuit either way around.
Key properties of resistors
When choosing resistors for a circuit, parameters such as power rating, tolerance and temperature drift should be considered.
The physical size of the resistor component directly affects how much heat generation it can withstand before sustaining damage. The resistor must be selected such that its maximum power rating is not exceeded, however it is generally recommended to leave at least ten percent margin as well. Resistors are available as through-hole mounted components as well as surface mounted components.
Resistors are specified with a nominal resistance value and a tolerance, often stated in percents. This tolerance states the maximum deviation of a single resistor from its nominal value. The resistance of two resistors are rarely precisely equal, but their values are both within a certain guaranteed interval, defined by the tolerance. Thus, resistors with low tolerance are often considered to be precision resistors. Some applications may require closely matched resistors or resistors with tight tolerances to ensure optimal performance, however it is generally considered that properly designed electronic products will function properly given all possible resistance values within the selected tolerance.
As the ambient temperature of a resistor fluctuates, so does the resistance of the resistor. The amount by which the resistance fluctuates is known as the temperature drift, and is often stated in ppm/Celsius or ppm/Fahrenheit. Regular resistors experienced increased resistance with rising temperature, and vice versa. There are also NTC (Negative Temperature Coefficient) resistors, whose resistance decreases with rising temperature, and vice versa.
Combinations of resistors
Resistors may be combined either in series or in parallel, resulting in a total resistance dependent upon the individual resistances as well as the combination order.
Resistors in series
When connecting two or more resistors in series, the equivalent resistance becomes the sum of the individual resistances. Mathematically, this can be expressed as
where is the number of resistors connected in series. If resistors with identical resistance are connected in series, the equivalent resistance becomes
Resistors in parallel
When two or more resistors are connected in parallel, the inverse of the equivalent resistance is equal to the sum of the inverses of the individual resistances. Mathematically, this is expressed as
where is the number of resistors connected in parallel. In the case of two resistors, the equivalent resistance can be calculated using the formula
If resistors with identical resistance are connected in parallel, the equivalent resistance is
Calculation examples
This section contains some examples of how to calculate the operation of resistors.
Calculating current
If 10 volts of voltage is applied over a 100-ohm resistor, the current through the resistor will, according to Ohm's law, equal
Calculating voltage
If a current of 1 mA flows through a 1-kilohm resistor, the voltage across the resistor becomes
Calculating resistance
If a current of 50 mA flows through a resistor when 6 volts of voltage is applied, the resistance equals
Calculating equivalent resistance
If three resistors (R1 = 100 ohm, R2 = 200 ohm, R3 = 400 ohm) are connected in series, the equivalent resistance is
If the same resistors are connected in parallel, the equivalent resistance is
so