Local ring: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (added example, properties) |
mNo edit summary |
||
Line 11: | Line 11: | ||
==References== | ==References== | ||
* {{cite book | author=Serge Lang | authorlink=Serge Lang | title=Algebra | edition=3rd ed | publisher=[[Addison-Wesley]] | year=1993 | isbn=0-201-55540-9 | pages=100,206-207 }} | * {{cite book | author=Serge Lang | authorlink=Serge Lang | title=Algebra | edition=3rd ed | publisher=[[Addison-Wesley]] | year=1993 | isbn=0-201-55540-9 | pages=100,206-207 }}[[Category:Suggestion Bot Tag]] |
Latest revision as of 16:01, 12 September 2024
A ring is said to be a local ring if it has a unique maximal ideal . It is said to be semi-local if it has finitely many maximal ideals.
The localisation of a commutative integral domain at a non-zero prime ideal is a local ring.
Properties
In a local ring the unit group is the complement of the maximal ideal.
Complete local ring
A local ring A is complete if the intersection and A is complete with respect to the uniformity defined by the cosets of the powers of m.
References
- Serge Lang (1993). Algebra, 3rd ed. Addison-Wesley, 100,206-207. ISBN 0-201-55540-9.