Deuterium: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David Yamakuchi
mNo edit summary
mNo edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
{{Elem_Infobox
{{Elem_Infobox
|background1=f2f2f2
|align=right
|elementColor=ffe303
|elName=Deuterium
|elName=Deuterium
|elClass=Periodic Table of Elements{{!}}Like Hydrogen, Deuterium can behave as a Metal and a Non-Metal
|elClass=Periodic table of elements{{!}}Like Hydrogen, Deuterium can behave as a Metal and a Non-Metal
|eltrnCfg=1''s''<sup>1</sup>
|eltrnCfg=1''s''<sup>1</sup>
|elgroup=&nbsp;
|elgroup=&nbsp;
Line 20: Line 17:
}}
}}


'''Deuterium''', chemical symbol '''D''' or '''<sup>2</sup>H''' is an [[isotope]] of the element [[hydrogen]] which has a nucleus containing one [[proton]] and one [[neutron]].  A compound containing deuterium is said to be deuterated.  Deuterated chemicals are widely use in [[NMR spectroscopy]], either as [[chemical shift]] references, as solvents, or to reduce the relaxation rates of NMR signals in large compounds like proteins.  Deuterium is a stable, naturally occuring isotope of hydrogen and represents 0.015% of naturally occuring hydrogen, with H-1 representing the remaining 99.985%.
'''Deuterium''', chemical symbol '''D''' or '''<sup>2</sup>H''', is an [[isotope]] of the element [[hydrogen]] which has a nucleus containing one [[proton]] and one [[neutron]].  A compound containing deuterium is said to be deuterated.  Deuterated chemicals are widely used in [[NMR spectroscopy]], either as [[chemical shift]] references, as solvents, or to reduce the relaxation rates of NMR signals in large compounds like proteins.  Deuterium is a stable, naturally occurring isotope of hydrogen and represents 0.015% of naturally occurring hydrogen, with H-1 representing the remaining 99.985%.


== Use in NMR spectroscopy ==
== Use in NMR spectroscopy ==
Line 32: Line 29:
:* d<sub>2</sub>-methylenechloride
:* d<sub>2</sub>-methylenechloride


Each of these chemicals have a small proportion of undeuterated content, which give a residual signal that can be used as a (non-zero) reference chemical shift.  However, several chemical compounds are specifically used a true reference points.
Each of these chemicals has a small proportion of undeuterated content, which gives a residual signal that can be used as a (non-zero) reference chemical shift.  However, several chemical compounds are specifically used as true reference points.


=== Chemical shift references ===
=== Chemical shift references ===
Three deuterated chemicals are widely used reference points for 1H NMR data.  In organic solvents, deutero- [[trimethylsilane]] (d9-TMS) is used.  For aqueous solutions, deuterated DSS or TSP are used instead.
Three deuterated chemicals are widely used reference points for 1H NMR data.  In organic solvents, deutero- [[trimethylsilane]] (d9-TMS) is used.  For aqueous solutions, deuterated DSS or TSP are used instead.[[Category:Suggestion Bot Tag]]

Latest revision as of 16:00, 6 August 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Deuterium
2.014102 1
-1


  D
1
1s1  , , 
[ ? ] Like Hydrogen, Deuterium can behave as a Metal and a Non-Metal:
Properties:
gas
Uses:
NMR spectroscopy


Deuterium, chemical symbol D or 2H, is an isotope of the element hydrogen which has a nucleus containing one proton and one neutron. A compound containing deuterium is said to be deuterated. Deuterated chemicals are widely used in NMR spectroscopy, either as chemical shift references, as solvents, or to reduce the relaxation rates of NMR signals in large compounds like proteins. Deuterium is a stable, naturally occurring isotope of hydrogen and represents 0.015% of naturally occurring hydrogen, with H-1 representing the remaining 99.985%.

Use in NMR spectroscopy

NMR spectroscopy, which primarily detects the signals of proton atoms, frequently uses a deuterated solvent and/or a deuterated compound as a chemical shift reference. Deuterium atoms also have different relaxation properties so that their use in NMR spectroscopy of large biopolymers such as proteins leads to enhanced signal detection.

Deuterated NMR solvents

Deuterated chemicals that are often used for NMR spectroscopy include:

  • d6-acetone (1,1,1,3,3,3-hexadeuteroacetone)
  • d3-chloroform (1,1,1-trideutero-chloroform, trideuterochloromethane)
  • d-ethanol
  • d6-benzene (1,2,3,4,5,6-hexdeuterobenzene)
  • d2-methylenechloride

Each of these chemicals has a small proportion of undeuterated content, which gives a residual signal that can be used as a (non-zero) reference chemical shift. However, several chemical compounds are specifically used as true reference points.

Chemical shift references

Three deuterated chemicals are widely used reference points for 1H NMR data. In organic solvents, deutero- trimethylsilane (d9-TMS) is used. For aqueous solutions, deuterated DSS or TSP are used instead.