Human T-lymphotropic virus: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Sai Kappagantula
mNo edit summary
 
(55 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Subpages}}
{{Subpages}}
{{EZarticle-closed-auto‎}}
{{Taxobox | color=violet
| name = Human T-lymphotropic virus
| image = HTLV-1_1.jpg
| virus_group = Group VI (ssRNA-RT)
| familia = Retroviridae
| genus = Deltaretrovirus
| sero_complex = Human T-lymphotropic virus}}


==Classification==
'''Human T-lymphotropic virus''' was first discovered in Japan in 1977 as the first human [[retrovirus]] to be identified as such. It is thought to be the disease-causing agent in several ailments. [[Paraparesis]] is one disease thought to be caused by the virus where an individual's lower extremities are impaired. The virus is also thought to be an [[oncovirus]], a [[cancer]] causing viral agent. [[Leukemia]], a cancer of [[bone marrow]] or [[blood cells]], has been linked to T-lymphotropic virus.


[[Image: Tosco_Refinery.jpg]]
==Genome structure==
The virus' genome consists of a single strand of RNA and uses [[reverse transcription]] to form DNA from an RNA template. Among [[retroviruses]] HTLV has a unique genome that leads to its unusual pathogenesis. It shares with other viruses the gag-pol-env motif with flanking LTR (long terminal repeat) sequences. It, however, includes a fourth sequence which acts in an ORF([[open reading frame]]), and leads to products that are most likely pathogenic: Tax, Rex, p12, p13, and p30.


===Higher order taxa===
==Cell structure and metabolism==


Domain; Phylum; Class; Order; family [Others may be used. Use [http://www.tolweb.org/tree/ Tree of Life] link to find]
HTLV is an [[enveloped virus]]. A core contains the genetic material as well as reverse transcribing proteins that facilitate transcription from RNA to DNA. This core is encased in a protein shell called a [[capsid]]. The outer most portion of the virus is the envelope - a [[phospholipid bilayer]] derived from the host cell that helps the virus invade a host cell. Between the envelope and the capsid is a collection of proteins called the [[tegument]].


===Species===
==Ecology==
HTLV interacts primarily with human hosts. Close relatives of the virus, however, do exist and invade other animal hosts.


''Genus species''[[Image:Example.jpg]]
==Pathology==


==Description and significance==
The virus, once in the host, can cause a variety of disease. These diseases include HTLV-1 associated [[myelopathy]], [[opportunistic infections]] from other microbes due to a debilitated immune system, and cancer. In respect to debilitating the immune system, a unique feedback process involving Tax and Rex, an early and rapid replication of the virus is attained. This is followed by a sudden halt to viral replication. The quick replication and abrupt stop sequence allows for the virus to avoid host defenses. This places HTLV in the unique category of [[delta retroviruses]], whose only other members are a few nonhuman viruses: BLV, STLV (simian T-cell leukemia virus), and PTLV (primate T-cell leukemia virus).
Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequencedDescribe how and where it was isolated.
Include a picture or two (with sources) if you can find them.


==Genome structure==
==Application to Biotechnology==
Describe the size and content of the genome.  How many chromosomes?  Circular or linear?  Other interesting features?  What is known about its sequence?
Does it have any plasmids?  Are they important to the organism's lifestyle?


==Current Research==
1. Project by The Nyborg Lab of Colorado State University is underway to explore the transciptional regulation of T-cells infected with HTLV. The goal is to study the interactions between the viral proteins, such as the Tax protein, and cellular machinery in vivo and in vitro. ''http://www.nyborglab.com/research.htm''




==Ecology==
2. Study being conducted at Fukuoka University is exploring alternatives to treating Adult T-Cell Leukemia/Lymphoma. Current usage of chemotherapy have insufficient results, but application of stem cell technology has yielded a possible new approach to treating the disease. ''http://www.ncbi.nlm.nih.gov/pubmed/18081707?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum''
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.


==Pathology==
3. Research on the role of nuclear factor-kappaB-inducing kinase using mice with a specific genotype. The study suggests that the lack of NIK inhibits HTLV replication and interrupts the maintenance of the provirus. ''http://www.ncbi.nlm.nih.gov/pubmed/18312467?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum''
How does this organism cause disease?  Human, animal, plant hosts?  Virulence factors, as well as patient symptoms.


==Application to Biotechnology==
==References==
Does this organism produce any useful compounds or enzymes?  What are they and how are they used?


==Current Research==
2.  http://www.medicalnewstoday.com/articles/95706.php


Enter summaries of the most recent research here--at least three required
3.  http://www.ncbi.nlm.nih.gov/pubmed/


==References==
4.  http://www.emedicine.com/med/topic1038.htm
[Sample reference] [http://ijs.sgmjournals.org/cgi/reprint/50/2/489 Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "''Palaeococcus ferrophilus'' gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". ''International Journal of Systematic and Evolutionary Microbiology''. 2000. Volume 50. p. 489-500.]


[http://en.citizendium.org/wiki/Main_Page | Citizendium]
5.  http://www.nyborglab.com/research.htm[[Category:Suggestion Bot Tag]]

Latest revision as of 16:01, 29 August 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Human T-lymphotropic virus
HTLV-1 1.jpg
Virus classification
Group: Group VI (ssRNA-RT)
Family: Retroviridae
Genus: Deltaretrovirus
Sero complex: Human T-lymphotropic virus

Human T-lymphotropic virus was first discovered in Japan in 1977 as the first human retrovirus to be identified as such. It is thought to be the disease-causing agent in several ailments. Paraparesis is one disease thought to be caused by the virus where an individual's lower extremities are impaired. The virus is also thought to be an oncovirus, a cancer causing viral agent. Leukemia, a cancer of bone marrow or blood cells, has been linked to T-lymphotropic virus.

Genome structure

The virus' genome consists of a single strand of RNA and uses reverse transcription to form DNA from an RNA template. Among retroviruses HTLV has a unique genome that leads to its unusual pathogenesis. It shares with other viruses the gag-pol-env motif with flanking LTR (long terminal repeat) sequences. It, however, includes a fourth sequence which acts in an ORF(open reading frame), and leads to products that are most likely pathogenic: Tax, Rex, p12, p13, and p30.

Cell structure and metabolism

HTLV is an enveloped virus. A core contains the genetic material as well as reverse transcribing proteins that facilitate transcription from RNA to DNA. This core is encased in a protein shell called a capsid. The outer most portion of the virus is the envelope - a phospholipid bilayer derived from the host cell that helps the virus invade a host cell. Between the envelope and the capsid is a collection of proteins called the tegument.

Ecology

HTLV interacts primarily with human hosts. Close relatives of the virus, however, do exist and invade other animal hosts.

Pathology

The virus, once in the host, can cause a variety of disease. These diseases include HTLV-1 associated myelopathy, opportunistic infections from other microbes due to a debilitated immune system, and cancer. In respect to debilitating the immune system, a unique feedback process involving Tax and Rex, an early and rapid replication of the virus is attained. This is followed by a sudden halt to viral replication. The quick replication and abrupt stop sequence allows for the virus to avoid host defenses. This places HTLV in the unique category of delta retroviruses, whose only other members are a few nonhuman viruses: BLV, STLV (simian T-cell leukemia virus), and PTLV (primate T-cell leukemia virus).

Application to Biotechnology

Current Research

1. Project by The Nyborg Lab of Colorado State University is underway to explore the transciptional regulation of T-cells infected with HTLV. The goal is to study the interactions between the viral proteins, such as the Tax protein, and cellular machinery in vivo and in vitro. http://www.nyborglab.com/research.htm


2. Study being conducted at Fukuoka University is exploring alternatives to treating Adult T-Cell Leukemia/Lymphoma. Current usage of chemotherapy have insufficient results, but application of stem cell technology has yielded a possible new approach to treating the disease. http://www.ncbi.nlm.nih.gov/pubmed/18081707?ordinalpos=6&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum

3. Research on the role of nuclear factor-kappaB-inducing kinase using mice with a specific genotype. The study suggests that the lack of NIK inhibits HTLV replication and interrupts the maintenance of the provirus. http://www.ncbi.nlm.nih.gov/pubmed/18312467?ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum

References

2. http://www.medicalnewstoday.com/articles/95706.php

3. http://www.ncbi.nlm.nih.gov/pubmed/

4. http://www.emedicine.com/med/topic1038.htm

5. http://www.nyborglab.com/research.htm