CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
No edit summary
imported>John Stephenson
(template)
 
(101 intermediate revisions by 5 users not shown)
Line 1: Line 1:
== '''[[Higgs boson]]''' ==
{{:{{FeaturedArticleTitle}}}}
----
<small>
The '''Higgs boson''' is a massive spin-0 [[elementary particle]] in the [[Standard Model]] of [[particle physics]] that plays a key role in explaining the mass of other elementary particles. The experimental discovery of a particle consistent with the Higgs was announced in a seminar on July 4, 2012.<ref name=Higgs/><ref name=CERN/> This particle was first proposed by Professor [[Peter Higgs]] of [[University of Edinburgh|Edinburgh University]] in 1964 as a means to explain the origin of the masses of the elementary particles by the introduction of an fundamental scalar field. This gives all the fundamental particles mass via a process of spontaneous symmetry breaking called the ''Higgs Mechanism''. The Higgs boson was popularised as the "God particle" by the [[Nobel Prize]]-winning [[physicist]] [[Leon M. Lederman]] in his 1993 popular science book ''The God Particle: If the Universe Is the Answer, What is the Question?'' co-written with science writer Dick Teresi.<ref name=Lederman/><ref name=Fermilab/>
==Footnotes==
 
===The Higgs mechanism===
 
In the [[Standard Model]], the theory that explains experimental observations of [[elementary particle]]s, the [[Quantum chromodynamics|QCD vacuum]] has less symmetry than the force laws governing fundamental interactions. This reduced symmetry situation is not unique, and is found in many systems, among them the ground state of [[ferroelectric]]s and of [[superconductor]]s. In these systems, the greater symmetry of nature is exhibited "on average" by a mosaic of sub-domains individually with reduced symmetry, but statistically exhibiting the greater symmetry of the interactions when all the domains are viewed as an ensemble.
 
In the case of superconductors, the photons, whose exchange mediates the electromagnetic interactions between [[Cooper pairs]], cannot propagate freely because of the presence everywhere of electric charge. In a similar fashion, the Higgs mechanism predicts the symmetry of electroweak interactions is broken by interactions among Higgs bosons in the vacuum, leading (among other things) to non-zero masses for the ''W<sup><big>±</big></sup>'' and ''Z'' weak bosons. In fact, the properties of mass and electric charge stem from interaction with the reduced symmetry vacuum, and are not a result of direct interactions between particles.<ref name=Tully/>
 
''[[Higgs boson|.... (read more)]]''
 
{| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;"
|-
! style="text-align: center;" | &nbsp;[[Higgs boson#References|notes]]
|-
|
{{reflist|2}}
{{reflist|2}}
|}
</small>

Latest revision as of 10:19, 11 September 2020

In computational molecular physics and solid state physics, the Born-Oppenheimer approximation is used to separate the quantum mechanical motion of the electrons from the motion of the nuclei. The method relies on the large mass ratio of electrons and nuclei. For instance the lightest nucleus, the hydrogen nucleus, is already 1836 times heavier than an electron. The method is named after Max Born and Robert Oppenheimer[1], who proposed it in 1927.

Rationale

The computation of the energy and wave function of an average-size molecule is a formidable task that is alleviated by the Born-Oppenheimer (BO) approximation.The BO approximation makes it possible to compute the wave function in two less formidable, consecutive, steps. This approximation was proposed in the early days of quantum mechanics by Born and Oppenheimer (1927) and is indispensable in quantum chemistry and ubiquitous in large parts of computational physics.

In the first step of the BO approximation the electronic Schrödinger equation is solved, yielding a wave function depending on electrons only. For benzene this wave function depends on 126 electronic coordinates. During this solution the nuclei are fixed in a certain configuration, very often the equilibrium configuration. If the effects of the quantum mechanical nuclear motion are to be studied, for instance because a vibrational spectrum is required, this electronic computation must be repeated for many different nuclear configurations. The set of electronic energies thus computed becomes a function of the nuclear coordinates. In the second step of the BO approximation this function serves as a potential in a Schrödinger equation containing only the nuclei—for benzene an equation in 36 variables.

The success of the BO approximation is due to the high ratio between nuclear and electronic masses. The approximation is an important tool of quantum chemistry, without it only the lightest molecule, H2, could be handled; all computations of molecular wave functions for larger molecules make use of it. Even in the cases where the BO approximation breaks down, it is used as a point of departure for the computations.

Historical note

The Born-Oppenheimer approximation is named after M. Born and R. Oppenheimer who wrote a paper [Annalen der Physik, vol. 84, pp. 457-484 (1927)] entitled: Zur Quantentheorie der Molekeln (On the Quantum Theory of Molecules). This paper describes the separation of electronic motion, nuclear vibrations, and molecular rotation. A reader of this paper who expects to find clearly delineated the BO approximation—as it is explained above and in most modern textbooks—will be disappointed. The presentation of the BO approximation is well hidden in Taylor expansions (in terms of internal and external nuclear coordinates) of (i) electronic wave functions, (ii) potential energy surfaces and (iii) nuclear kinetic energy terms. Internal coordinates are the relative positions of the nuclei in the molecular equilibrium and their displacements (vibrations) from equilibrium. External coordinates are the position of the center of mass and the orientation of the molecule. The Taylor expansions complicate the theory tremendously and make the derivations very hard to follow. Moreover, knowing that the proper separation of vibrations and rotations was not achieved in this work, but only eight years later [by C. Eckart, Physical Review, vol. 46, pp. 383-387 (1935)] (see Eckart conditions), chemists and molecular physicists are not very much motivated to invest much effort into understanding the work by Born and Oppenheimer, however famous it may be. Although the article still collects many citations each year, it is safe to say that it is not read anymore, except maybe by historians of science.

Footnotes

  1. Wikipedia has an article about Robert Oppenheimer.