File:Ack3a600.jpg: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
(generator)
(== Summary == Importing file)
Tag: Server-side upload
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
== Summary ==
== Summary ==
{{Image_Details|user
Importing file
|description  = [[Complex map]] of [[tetration]] to base <math>b=\sqrt{2}</math>
|author      = [[User:Dmitrii Kouznetsov|Dmitrii Kouznetsov]]
|date-created = August 2014
|pub-country  = Japan
|notes        = I plan to use this image in the article
D.Kouznetsov. Holomorphic ackermann. 2015, in preparation.
|versions    = http://mizugadro.mydns.jp/t/index.php/File:Ack3a600.jpg
The real-real plot of this function is one of curves at http://en.citizendium.org/wiki/File:Tetreal10bx10d.png
}}
== Licensing ==
{{CC|by|3.0}}
==[[C++]] generator of map==
Files
[[ado.cin]],
[[conto.cin]],
[[sqrt2f21e.cin]]
should be loaded to the working directory in order to compile the code below.
 
<nowiki>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
#define z_type std::complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "sqrt2f21e.cin"
#include "conto.cin"
 
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
 
int M=601,M1=M+1;
int N=461,N1=N+1;
 
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1];
char v[M1*N1]; // v is working array
FILE *o;o=fopen("tetqma.eps","w");ado(o,602,202);
fprintf(o,"301 101 translate\n 10 10 scale\n");
DO(m,M1)X[m]=-30.+.1*(m);
DO(n,200)Y[n]=-10.+.05*n;
        Y[200]=-.01;
        Y[201]= .01;
for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.);
for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}}
for(n=-10;n<11;n++){ M( -30,n)L(30,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
 
DO(n,N1){y=Y[n];
          for(m=295;m<305;m++)
          {x=X[m]; //printf("%5.2f\n",x);
          z=z_type(x,y);
          c=F21E(z);
          p=Re(c);q=Im(c);
          if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
          d=c;
          for(k=1;k<31;k++)
                { m1=m+k*10; if(m1>M) break;
                d=exp(d*(.5*log(2.)));
                p=Re(d);q=Im(d);
                if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
                }
          d=c;
          for(k=1;k<31;k++)
                { m1=m-k*10; if(m1<0) break;
                d=log(d)*(2./log(2.));
                p=Re(d);q=Im(d);
                if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
                }
        }}
 
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n");
                    conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n");
for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n");
 
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf tetqma.eps");
system(  "open tetqma.pdf");
getchar(); system("killall Preview");
}
</nowiki>
 
==References==
 
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html<br>
http://www.ils.uec.ac.jp/~dima/PAPERS/2010q2.pdf<br>
http://mizugadro.mydns.jp/PAPERS/2010q2.pdf
D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
 
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br>
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br>
http://mizugadro.mydns.jp/BOOK/202.pdf
Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. (In Russian)
 
D.Kouznetsov. Holomorphic [[ackermann]]s. 2015, in preparation.
 
[[Category:Complex map]]
[[Category:Superfunction]]
[[Category:Tetration]]

Latest revision as of 18:52, 11 March 2022

Summary

Importing file

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:52, 11 March 2022Thumbnail for version as of 18:52, 11 March 20225,130 × 1,793 (1.09 MB)Maintenance script (talk | contribs)== Summary == Importing file

The following page uses this file:

Metadata