Clebsch-Gordan coefficients: Difference between revisions
imported>Paul Wormer |
imported>Paul Wormer |
||
Line 19: | Line 19: | ||
==Tensor product space== | ==Tensor product space== | ||
Let <math>V_1</math> be the <math>2j_1+1</math> dimensional | Let <math>V_1</math> be the <math>2j_1+1</math> dimensional | ||
vector space spanned by the | vector space spanned by the eigenstates of <math>\scriptstyle \mathbf{j}^2\otimes 1</math> and <math>\scriptstyle j_z\otimes 1</math> | ||
:<math> | :<math> | ||
|j_1 m_1\rangle,\quad m_1=-j_1,-j_1+1,\ldots j_1 | |j_1 m_1\rangle,\quad m_1=-j_1,-j_1+1,\ldots j_1 | ||
</math> | </math> | ||
and <math>V_2</math> the <math>2j_2+1</math> dimensional | and <math>V_2</math> the <math>2j_2+1</math> dimensional | ||
vector space spanned by | vector space spanned by the eigenstates of <math>\scriptstyle 1\otimes\mathbf{j}^2</math> and <math>\scriptstyle 1\otimes j_z</math> | ||
:<math> | :<math> | ||
|j_2 m_2\rangle,\quad m_2=-j_2,-j_2+1,\ldots j_2. | |j_2 m_2\rangle,\quad m_2=-j_2,-j_2+1,\ldots j_2. | ||
Line 46: | Line 46: | ||
J_i = j_i \otimes 1 + 1 \otimes j_i\quad\mathrm{for}\quad i = x,y,z. | J_i = j_i \otimes 1 + 1 \otimes j_i\quad\mathrm{for}\quad i = x,y,z. | ||
</math> | </math> | ||
The total angular momentum operators satisfy the | The total angular momentum operators satisfy the commutation relations | ||
:<math> | :<math> | ||
[J_k,J_l] = i \sum_{m=x,y,z} \epsilon_{klm}J_m \, | [J_k,J_l] = i \sum_{m=x,y,z} \epsilon_{klm}J_m \, | ||
</math> | </math> | ||
showing that '''J''' is indeed an angular momentum operator. The quantity <math>\scriptstyle \epsilon_{klm} </math> is the [[Levi-Civita symbol]]. | |||
Hence total angular momentum eigenstates exist | |||
:<math> | :<math> | ||
\mathbf{J}^2 |(j_1j_2)JM\rangle = J(J+1) |(j_1j_2)JM\rangle | \mathbf{J}^2 |(j_1j_2)JM\rangle = J(J+1) |(j_1j_2)JM\rangle |
Revision as of 10:09, 30 December 2007
In quantum mechanics, the Clebsch-Gordan coefficients (CG coefficients) are sets of numbers that arise in angular momentum coupling.
In mathematics, the CG coefficients appear in group representation theory, particularly of compact Lie groups. They arise in the explicit direct sum decomposition of the outer product of two irreducible representations (irreps) of a group G. In general the outer product representation (rep)—which is carried by a tensor product space—is reducible under G. Decomposition of the outer product rep into irreps of G requires a basis transformation of the tensor product space. The CG coefficients are the elements of the matrix of this basis transformation. In physics it is common to consider only orthonormal bases of the vector spaces involved, and then CG coefficients constitute a unitary matrix.
The name derives from the German mathematicians Alfred Clebsch (1833-1872) and Paul Gordan (1837-1912), who encountered an equivalent problem in invariant theory.
The formulas below use Dirac's bra-ket notation, i.e., the quantity stands for a positive definite inner product between the elements ψ and φ of the same complex inner product space. We follow the physical convention Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \langle c\psi | \phi \rangle = c^* \langle \psi | \phi \rangle} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle c^*\,} is the complex conjugate of the complex number c.
Angular momentum CG coefficients
Although Clebsch-Gordan coefficients can be defined for arbitrary groups, we restrict our attention in this article to the groups associated with space and spin angular momentum, namely the groups SO(3) and SU(2). In that case CG coefficients can be defined as the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. See the article angular momentum for the definition of angular momentum operators and their eigenstates. Since the definition of CG coefficients needs the definition of tensor products of angular momentum eigenstates, this will be given first.
From the formal definition recursion relations for the Clebsch-Gordan coefficients can be found. In order to settle the numerical values for the coefficients, a phase convention must be adopted. Below the Condon and Shortley phase convention is chosen.
Tensor product space
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_1} be the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2j_1+1} dimensional vector space spanned by the eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \mathbf{j}^2\otimes 1} and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 m_1\rangle,\quad m_1=-j_1,-j_1+1,\ldots j_1 }
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_2} the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2j_2+1} dimensional vector space spanned by the eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 1\otimes\mathbf{j}^2} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 1\otimes j_z}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_2 m_2\rangle,\quad m_2=-j_2,-j_2+1,\ldots j_2. }
The tensor product of these spaces, , has a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2j_1+1)(2j_2+1)} dimensional uncoupled basis
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 m_1\rangle|j_2 m_2\rangle \equiv |j_1 m_1\rangle \otimes |j_2 m_2\rangle, \quad m_1=-j_1,\ldots j_1, \quad m_2=-j_2,\ldots j_2. }
Angular momentum operators acting on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{12}} can be defined by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (j_i \otimes 1)|j_1 m_1\rangle|j_2 m_2\rangle \equiv (j_i|j_1m_1\rangle) \otimes |j_2m_2\rangle, \quad i = x,y,z, }
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1 \otimes j_i) |j_1 m_1\rangle|j_2 m_2\rangle) \equiv |j_1m_1\rangle \otimes j_i|j_2m_2\rangle,\quad i = x,y,z. }
Total angular momentum operators are defined by
The total angular momentum operators satisfy the commutation relations
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [J_k,J_l] = i \sum_{m=x,y,z} \epsilon_{klm}J_m \, }
showing that J is indeed an angular momentum operator. The quantity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \epsilon_{klm} } is the Levi-Civita symbol. Hence total angular momentum eigenstates exist
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{J}^2 |(j_1j_2)JM\rangle = J(J+1) |(j_1j_2)JM\rangle }
It can be derived [see, e.g., Messiah (1981) pp. 556-558] that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} must satisfy the triangular condition
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1-j_2| \leq J \leq j_1+j_2 }
The total number of total angular momentum eigenstates is equal to the dimension of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{12}}
The total angular momentum states form an orthonormal basis of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{12}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle J M | J' M' \rangle = \delta_{J\, J'}\delta_{M\,M'} }
Formal definition of Clebsch-Gordan coefficients
The total angular momentum states can be expanded in the uncoupled basis
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |(j_1j_2)JM\rangle = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} |j_1m_1\rangle|j_2m_2\rangle \langle j_1m_1j_2m_2|JM\rangle }
The expansion coefficients are called Clebsch-Gordan coefficients.
Applying the operator
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_z = j_z \otimes 1 + 1 \otimes j_z }
to both sides of the defining equation shows that the Clebsch-Gordan coefficients can only be nonzero when
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = m_1 + m_2.\, }
Recursion relations
Applying the total angular momentum raising and lowering operators
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_\pm = j_\pm \otimes 1 + 1 \otimes j_\pm }
to the left hand side of the defining equation gives
Applying the same operators to the right hand side gives
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_\pm \sum_{m_1m_2} |j_1m_1\rangle|j_2m_2\rangle \langle j_1m_1j_2m_2|JM\rangle }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sum_{m_1m_2}\left[ C_\pm(j_1,m_1)|j_1 m_1\pm 1\rangle |j_2m_2\rangle +C_\pm(j_2,m_2)|j_1 m_1\rangle |j_2 m_2\pm 1\rangle \right] \langle j_1 m_1 j_2 m_2|J M\rangle }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{m_1m_2} |j_1m_1\rangle|j_2m_2\rangle \left[ C_\pm(j_1,m_1\mp 1) \langle j_1 {m_1\mp 1} j_2 m_2|J M\rangle +C_\pm(j_2,m_2\mp 1) \langle j_1 m_1 j_2 {m_2\mp 1}|J M\rangle \right]. }
Combining these results gives recursion relations for the Clebsch-Gordan coefficients
Taking the upper sign with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M=J} gives
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 = C_+(j_1,m_1-1) \langle j_1 {m_1-1} j_2 m_2|J J\rangle + C_+(j_2,m_2-1) \langle j_1 m_1 j_2 m_2-1|J J\rangle. }
In the Condon and Shortley phase convention the coefficient Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 j_1 j_2 J-j_1|J J\rangle} is taken real and positive. With the last equation all other Clebsch-Gordan coefficients can be found. The normalization is fixed by the requirement that the sum of the squares, which corresponds to the norm of the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |(j_1j_2)JJ\rangle} must be one.
The lower sign in the recursion relation can be used to find all the Clebsch-Gordan coefficients with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M=J-1} . Repeated use of that equation gives all coefficients.
This procedure to find the Clebsch-Gordan coefficients shows that they are all real (in the Condon and Shortley phase convention).
Explicit expression
The first derivation of an algebraic formula for CG coefficients was given by Wigner in his famous 1931 book. The following expression for the CG coefficients is due to Van der Waerden (1932) and is the most symmetric one of the various existing forms, see, e.g., Biedenharn and Louck (1981) for a derivation,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle jm | j_1 m_1 ;j_2 m_2 \rangle = \delta_{m,m_1+m_2} \Delta (j_1 ,j_2 ,j) }
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta (j_1 ,j_2 ,j) \equiv \left[ \frac{ (j_1 +j_2 -j)! (j_1 -j_2 +j)! (-j_1 +j_2 +j)!} { (j_1 +j_2 +j+1)!}\right]^{{\frac{1}{2}}}, }
and the sum runs over all values of t which do not lead to negative factorials.
Orthogonality relations
These are most clearly written down by introducing the alternative notation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle J M|j_1 m_1 j_2 m_2\rangle \equiv \langle j_1 m_1 j_2 m_2|J M \rangle }
The first orthogonality relation is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{J=|j_1-j_2|}^{j_1+j_2} \sum_{M=-J}^{J} \langle j_1 m_1 j_2 m_2|J M \rangle \langle J M|j_1 m_1' j_2 m_2'\rangle = \delta_{m_1,m_1'}\delta_{m_2,m_2'} }
and the second
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{m_1m_2} \langle J M|j_1 m_1 j_2 m_2\rangle \langle j_1 m_1 j_2 m_2|J' M' \rangle = \delta_{J,J'}\delta_{M,M'}. }
Special cases
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J=0\,} the Clebsch-Gordan coefficients are given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 m_1 j_2 m_2 | 0 0 \rangle = \delta_{j_1,j_2}\delta_{m_1,-m_2} \frac{(-1)^{j_1-m_1}}{\sqrt{2j_2+1}}. }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 m_1 0 0 | J M \rangle = \delta_{j_1 J}\delta_{m_1,M}, \qquad j_1 \ge 0. }
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J=j_1+j_2\,} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M=J\,} we have
Symmetry properties
Relation to 3-jm symbols
Clebsch-Gordan coefficients are related to 3-jm symbols which have more convenient symmetry relations.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 m_1 j_2 m_2 | j_3 m_3 \rangle = (-1)^{j_1-j_2+m_3}\sqrt{2j_3+1} \begin{pmatrix} j_1 & j_2 & j_3\\ m_1 & m_2 & -m_3 \end{pmatrix}. }
See also
- 3-jm symbol
- Racah W-coefficient
- 6-j symbol
- 9-j symbol
- Spherical harmonics
- Associated Legendre polynomials
- Angular momentum
- Angular momentum coupling
- Total electronic angular momentum quantum number
- Azimuthal quantum number
- Table of Clebsch-Gordan coefficients
External links
References
- Wigner, E. P. (1931). Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Braunschweig: Vieweg Verlag.
- Edmonds, A. R. (1957). Angular Momentum in Quantum Mechanics. Princeton, New Jersey: Princeton University Press. ISBN 0-691-07912-9.
- Condon, Edward U.; Shortley, G. H. (1970). “Chapter 3”, The Theory of Atomic Spectra. Cambridge: Cambridge University Press. ISBN 0-521-09209-4.
- Messiah, Albert (1981). Quantum Mechanics (Volume II), 12th edition. New York: North Holland Publishing. ISBN 0-7204-0045-7.
- Brink, D. M.; Satchler, G. R. (1993). “Chapter 2”, Angular Momentum, 3rd edition. Oxford: Clarendon Press. ISBN 0-19-851759-9.
- Zare, Richard N. (1988). “Chapter 2”, Angular Momentum. New York: John Wiley & Sons. ISBN 0-471-85892-7.
- Biedenharn, L. C.; Louck, J. D. (1981). Angular Momentum in Quantum Physics. Reading, Massachusetts: Addison-Wesley. ISBN 0201135078.