Erlang (programming language)/Tutorials/List Comprehensions: Difference between revisions
imported>Eric Evers (New page: ==List Comprehensions== ===Intro to Comprehensions=== A list comprehension is a mathematical way to construct a list. To do list comprehension we have to use a new operator "<-", "taken f...) |
imported>Chris Day No edit summary |
||
Line 1: | Line 1: | ||
{{subpages}} | |||
==List Comprehensions== | ==List Comprehensions== | ||
Revision as of 12:27, 22 April 2008
The metadata subpage is missing. You can start it via filling in this form or by following the instructions that come up after clicking on the [show] link to the right. | |||
---|---|---|---|
|
List Comprehensions
Intro to Comprehensions
A list comprehension is a mathematical way to construct a list. To do list comprehension we have to use a new operator "<-", "taken from".
L = [ X*X || X <- [1,2,3,4] ].
English translation is: build a list, L with elements that have the value X*X, such that X is taken from the list [1,2,3,4] it gives the output:
[1,4,9,16]
Notice that this is similar to
lists:map(fun(X) -> X*X end, [1,2,3,4])
In fact list comprehension makes a shorthand notation to most of the functions in the lists module.
Simple Comprehensions
You can use them to solve equations.
L = [ {X,Y} || X <- [1,2,3,4], Y <- [1,2,3,4], X*X == Y].
output:
[ {1,1}, {2,4} ]
Lists version
Can you figure out the lists functions used in the above comprehension ?
How about
F = fun(X, Y) -> lists:filter(fun({X0, Y0}) -> X0 * X0 == Y0 end, lists:reverse( lists:foldl(fun(E, Acc) -> lists:zip(lists:duplicate(length(Y), E), Y) ++ Acc end, [], X))). F([1,2,3,4], [1,2,3,4]).
That is 5 functions in one succulent line. For the remainder of the examples take some time and find the corresponding lists functions that do the same thing.
Permutations
Here we flip two coins:
[ [X]++[Y] || X<-"HT", Y<-"HT"].
Note: strings are lists in erlang. all combinations are: output:
["HH","HT","TH","TT"]
Intermediate list comprehensions
An important use of List Comprehensions is to help translate prolog into erlang. Note: in general using huge numbers of atoms is not a good idea.
-module(think). % -compile(export_all). % % male(adam) -> true; % male(seth) -> true; male(cain) -> true; male(abel) -> true; male(noah) -> true; male(_X) -> false. % female(eve) -> true; female(_X) -> false. % parent(adam,cain) -> true; parent(adam,abel) -> true; parent(eve,cain) -> true; parent(eve,abel) -> true; parent(noah,shem) -> true; parent(_X,_Y) -> false. % people() -> [ adam, shem, cain, abel, eve, noah ]. % father_of() -> [ {X,Y} || X <- people(), Y <- people(), parent(X,Y), male(X) ]. mother_of() -> [ {X,Y} || X <- people(), Y <- people(), parent(X,Y), female(X) ].
compile with c(think). and generate output with:
17> think:father_of() ++ think:mother_of(). [{adam,cain},{adam,abel},{noah,shem},{eve,cain},{eve,abel}]
Advanced List Comprehensions
Example with quicksort in 7 lines.
-module(sort). -compile(export_all). % classic way to show off erlang tersitude. qsort([]) -> []; qsort([H | T]) -> qsort([ X || X <- T, X < H ]) ++ [H] ++ qsort([ X || X <- T, X >= H ]).
% sample output: % % sort:qsort([1,5,3,7,6,8,9,4]). % [1,3,4,5,6,7,8,9]
Exercises
1) Write a program using list comprehension that finds the integer solutions {X,Y} for a circle of radius 5.
Solutions
1)
-module( solve_circle). -export( [start/0] ). % numbers() -> lists:seq(-5,5). % start() -> [ {X,Y} || X <- numbers(), Y <- numbers(), X*X + Y*Y == 25 ]. % % ================================================ % % sample output % 11> solve_circle:start(). % [{-5,0}, {-4,-3}, {-4,3}, {-3,-4}, % {-3,4}, {0,-5}, {0,5}, {3,-4}, % {3,4}, {4,-3}, {4,3}, {5,0}]