Talk:Particle in a box: Difference between revisions
imported>Russ McGinn (→Readability: reply) |
imported>Russ McGinn m (→Readability: spl) |
||
Line 20: | Line 20: | ||
:Russ, ODE is indeed some kind of DE. It stands for ordinary differential equation. Thanks for pointing that out; I've changed it in the text. You mention "a few instances" - do you have any other input on how the article reads in general or sections that aren't as clear as they could be, or did you already list them all? [[User:Michael Underwood|Michael Underwood]] 18:00, 23 October 2007 (CDT) | :Russ, ODE is indeed some kind of DE. It stands for ordinary differential equation. Thanks for pointing that out; I've changed it in the text. You mention "a few instances" - do you have any other input on how the article reads in general or sections that aren't as clear as they could be, or did you already list them all? [[User:Michael Underwood|Michael Underwood]] 18:00, 23 October 2007 (CDT) | ||
::Sorry Michael, I think I may have overstated 'the instances'. I'm not sure I'm really your man to comment on whether sections are as clear as they could be. Quantum mechanics, like relativity, is something to me where I was taught the basic ideas in school, love the wierd and wonderful 'effects' we are told about, but am instantly lost in the detail :-) I hadn't realised this was a sub article of [[Schrödinger equation]] a read of which helped, but you've already linked that in the first sentence so I can't see how that can be improved. I was staring at the first equation wondering what psi represented, but the other article tells me it's the eigenvector or wavefunction or (as I think I was taught) a quantum value. I'm at the limit of memory on the d2/dx2 | ::Sorry Michael, I think I may have overstated 'the instances'. I'm not sure I'm really your man to comment on whether sections are as clear as they could be. Quantum mechanics, like relativity, is something to me where I was taught the basic ideas in school, love the wierd and wonderful 'effects' we are told about, but am instantly lost in the detail :-) I hadn't realised this was a sub article of [[Schrödinger equation]] a read of which helped, but you've already linked that in the first sentence so I can't see how that can be improved. I was staring at the first equation wondering what psi represented, but the other article tells me it's the eigenvector or wavefunction or (as I think I was taught) a quantum value. I'm at the limit of memory on the d2/dx2 bit too - that's the differential calculus bit I think........but maybe I get the general idea - within certain fixed values in 1D space the particle will have variable potential and because of that potential the particle cannot move beyond the fixed limits in space? Actually I've just realised I've no idea what 'potential' means in this context, so I'm off to read [[Quantum mechanics]] and [[Schrödinger equation]] rather than waste your time with silly questions. cheers --[[User:Russ McGinn|Russ McGinn]] 19:46, 23 October 2007 (CDT) |
Revision as of 18:48, 23 October 2007
Do we need the 3D case?
I think this page is starting to approach complete, besides the currently empty sections on the 3D spherical and cubic wells. I believe that the cubic will isn't really needed, but what are people's thoughts on the spherical well? It is definitely important but perhaps a separate page for it would serve to keep this page simpler, as well as making it nearly done.
Michael Underwood 20:50, 4 July 2007 (CDT)
- The simplest 3D case is a cube, which is worth treating here. The ball case is an exercise in spherical coordinates, maybe better suited for a different article. What I would like to do here is to make an animation of the probability density of a simple non-stationary state. /Pieter Kuiper 04:13, 23 October 2007 (CDT)
- I agree, I was getting ready to move the spherical well to its own page anyway and have now done so. Michael Underwood 14:31, 23 October 2007 (CDT)
- Excellent. I made the animation that I was thinking of, and I put it in below your image, but that is probably not the best place. Of course one should write an explanation, but I do not have the time now. /Pieter Kuiper 17:36, 23 October 2007 (CDT)
Readability
Not sure what the 'accessibility' test is for maths articles so I apologise if the following comments seem ridiculously simple and silly - I did A-level pure and applied maths 20 odd years ago, but that's when I said goodbye to calculus and 'hard sums'. There's a few instances of acronyms that aren't explained or linked to which I found made the article presuppose quite a bit of knowledge, nothing too testing - I put (1D) in brackers after one-dimensional to aid reading for non-mathematicians such as myself. Is an ODE some kind of differential equation? perhaps we could spell it out in the first instance and contract it for later instances? --Russ McGinn 17:44, 23 October 2007 (CDT)
- Russ, ODE is indeed some kind of DE. It stands for ordinary differential equation. Thanks for pointing that out; I've changed it in the text. You mention "a few instances" - do you have any other input on how the article reads in general or sections that aren't as clear as they could be, or did you already list them all? Michael Underwood 18:00, 23 October 2007 (CDT)
- Sorry Michael, I think I may have overstated 'the instances'. I'm not sure I'm really your man to comment on whether sections are as clear as they could be. Quantum mechanics, like relativity, is something to me where I was taught the basic ideas in school, love the wierd and wonderful 'effects' we are told about, but am instantly lost in the detail :-) I hadn't realised this was a sub article of Schrödinger equation a read of which helped, but you've already linked that in the first sentence so I can't see how that can be improved. I was staring at the first equation wondering what psi represented, but the other article tells me it's the eigenvector or wavefunction or (as I think I was taught) a quantum value. I'm at the limit of memory on the d2/dx2 bit too - that's the differential calculus bit I think........but maybe I get the general idea - within certain fixed values in 1D space the particle will have variable potential and because of that potential the particle cannot move beyond the fixed limits in space? Actually I've just realised I've no idea what 'potential' means in this context, so I'm off to read Quantum mechanics and Schrödinger equation rather than waste your time with silly questions. cheers --Russ McGinn 19:46, 23 October 2007 (CDT)