User talk:Dmitrii Kouznetsov/Analytic Tetration: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
Line 1: Line 1:
==Henryk Trappmann 's theorems==
==Henryk Trappmann 's theorems==
Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458
Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458
===Theorem T1.===
===Theorem T1. (about Gamma funciton)===
'''Let''' <math>~F~</math> be [[holomorphic]] on the right half plane
'''Let''' <math>~F~</math> be [[holomorphic]] on the right half plane
'''let''' <math>~F(z+1)=zF(z)~</math> for  all <math>~z~</math> such that <math>~\Re(z)>0~</math>.<br>  
'''let''' <math>~F(z+1)=zF(z)~</math> for  all <math>~z~</math> such that <math>~\Re(z)>0~</math>.<br>  
Line 7: Line 7:
Let <math>F</math> be bounded on the strip <math>~1 \le \Re(z)<2 ~</math>.<br>
Let <math>F</math> be bounded on the strip <math>~1 \le \Re(z)<2 ~</math>.<br>
'''Then''' <math>~F~</math> is the [[gamma function]].
'''Then''' <math>~F~</math> is the [[gamma function]].
'''Proof''' see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!)


===Theorem T2===
===Theorem T2===

Revision as of 05:31, 29 September 2008

Henryk Trappmann 's theorems

Copypast from http://math.eretrandre.org/tetrationforum/showthread.php?tid=165&pid=2458#pid2458

Theorem T1. (about Gamma funciton)

Let be holomorphic on the right half plane let for all such that .
Let .
Let be bounded on the strip .
Then is the gamma function.

Proof see in Reinhold Remmert, "Funktionnentheorie", Springer, 1995. As reference is given: H. Wielandt 1939. (Mein Gott, so old reference!)

Theorem T2

Let be solution of , , bounded in the strip .

Then is exponential on base , id est, .

Proof. We know that every other solution must be of the form where is a 1-periodic holomorphic function. This can roughly be seen by showing periodicity of .

,

where is also a 1-periodic function,

While each of and is bounded on , must be bounded too.

Theorem T3

Let .
Let Let Let

Then

Discussion. Id est, is Fibbonachi function.

Theorem T4

Let .
Let each of and satisfies conditions

for
is holomorphic function, bounded in the strip .

Then

Discussion. Such is unique tetration on the base .