Group action: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(added stabiliser, orbit, transitive)
imported>Richard Pinch
m (typo)
Line 32: Line 32:
:<math>Orb(x) = \{ x^g : g \in G \} . \,</math>
:<math>Orb(x) = \{ x^g : g \in G \} . \,</math>


The orbits [[partition]] the set ''X'': they are the equivalence classes for the relation <math>\stackrel{G}{\sim}<\math> define by
The orbits [[partition]] the set ''X'': they are the equivalence classes for the relation <math>\stackrel{G}{\sim}</math> defined by


:<math>x \stackrel{G}{\sim} y \Leftrightarrow \exists g \in G, y = x^g . \, </math>
:<math>x \stackrel{G}{\sim} y \Leftrightarrow \exists g \in G, y = x^g . \, </math>

Revision as of 02:27, 16 November 2008

In mathematics, a group action is a relation between a group G and a set X in which the elements of G act as operations on the set.

Formally, a group action is a map from the Cartesian product Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G \times X \rightarrow X} , written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (g,x) \mapsto gx} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xg} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^g} satisfying the following properties:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{1_G} = x ; \, }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{gh} = (x^g)^h . }

From these we deduce that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(x^{g^{-1}}\right)^g = x^{g^{-1}g} = x^{1_G} = x} , so that each group element acts as an invertible function on X, that is, as a permutation of X.

If we let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_g} denote the permutation associated with action by the group element Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} , then the map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A : G \rightarrow S_X} from G to the symmetric group on X is a group homomorphism, and every group action arises in this way. We may speak of the action as a permutation representation of G. The kernel of the map A is also called the kernel of the action, and a faithful action is one with trivial kernel. Since we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G \rightarrow G/K \rightarrow S_X , \, }

where K is the kernel of the action, there is no loss of generality in restricting consideration to faithful actions where convenient.

Examples

  • Any group acts on any set by the trivial action in which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^g = x} .
  • The symmetric group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_X} acts of X by permuting elements in the natural way.
  • The automorphism group of an algebraic structure acts on the structure.

Stabilisers

The stabiliser of an element x of X is the subset of G which fixes x:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Stab(x) = \{ g \in G : x^g = x \} . \,}

The stabiliser is a subgroup of G.

Orbits

The orbit of any x in X is the subset of X which can be "reached" from x by the action of G:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Orb(x) = \{ x^g : g \in G \} . \,}

The orbits partition the set X: they are the equivalence classes for the relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \stackrel{G}{\sim}} defined by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \stackrel{G}{\sim} y \Leftrightarrow \exists g \in G, y = x^g . \, }

If x and y are in the same orbit, their stabilisers are conjugate.

A fixed point of an action is just an element x of X such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^g = x} for all g in G: that is, such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Orb(x) = \{x\}} .

Examples

  • In the trivial action, every point is a fixed point and the orbits are all singletons.
  • Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} be a permutation in the usual action of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n} on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X = \{1,\ldots,n\}} . The cyclic subgroup <math\langle \pi \rangle</math> generated by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} acts on X and the orbits are the cycles of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi} .

Transitivity

An action is transitive or 1-transitive if for any x and y in X there exists a g in G such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = x^g} . Equivalently, the action is transitive if it has only one orbit.