Petrochemicals: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
m (→‎Feedstocks sources: minor addition.)
imported>Milton Beychok
m (Null space to jog)
Line 3: Line 3:
'''Petrochemicals''' are [[Chemistry|chemical]] products made from the [[hydrocarbon]]s present in raw [[natural gas]] and [[Petroleum|petroleum crude oil]]. The largest petrochemical manufacturing industries are to be found in the [[United States]], [[Europe|Western Europe]], [[Asia]] and the [[Middle East]].  
'''Petrochemicals''' are [[Chemistry|chemical]] products made from the [[hydrocarbon]]s present in raw [[natural gas]] and [[Petroleum|petroleum crude oil]]. The largest petrochemical manufacturing industries are to be found in the [[United States]], [[Europe|Western Europe]], [[Asia]] and the [[Middle East]].  


A relatively small number of hydyrocarbon feedstocks form the basis of the petrochemical industries, namely [[methane]], [[ethylene]], [[propylene]], [[butene]]s, [[butadiene]], [[benzene]], [[toluene]] and [[xylene]]s.<ref name=Myers>{{cite book|author=Richard Meyers|title=The Basics of Chemistry|edition=|publisher=Greenwood Press|year=2003|id=ISBN 0-313-31664-3}}</ref><ref name=HP>{{cite journal|author=Staff |year=2001 |month=March|title=Petrochemical Processes 2001 |journal=Hydrocarbon Processing |volume= |issue= |pages=pp. 71-246 |id=ISSN 0887-0284}}</ref>
A relatively small number of hydyrocarbon feedstocks form the basis of the petrochemical industries, namely [[methane]], [[ethylene]], [[propylene]], [[butene]]s, [[butadiene]], [[benzene]], [[toluene]] and [[xylene]]s.<ref name=Myers>{{cite book|author=Richard Meyers|title=The Basics of Chemistry|edition=|publisher=Greenwood Press|year=2003|id=ISBN 0-313-31664-3}}</ref><ref name=HP>{{cite journal|author=Staff |year=2001 |month=March|title=Petrochemical Processes 2001 |journal=Hydrocarbon Processing |volume= |issue= |pages=pp. 71-246 |id=ISSN 0887-0284}}</ref>  


As of 2007, there were 2,980 operating petrochemical plants in 4,320 locations worldwide.<ref>[http://www.prlog.org/10011624-petrochemical-industry-worldwide.pdf Petrochemical Industry – Worldwide]</ref> The petrochemical end products from those plants include plastics, soaps, detergents, solvents, paints, drugs, fertilizer, pesticides, explosives, synthetic textile fibers and rubbers, flooring and insulating materials and much more. Petrochemicals are found in such common consumer products as aspirin, cars, clothing, compact discs, video tapes, electronic equipment, furniture, and a great many others.<ref>[http://www.npradc.org/docs/ourIndustry/petrochemicalFacts/petrochart.pdf Petrochemicals Chart] From the website of the [[National Petrochemical & Refiners Association]]</ref>
As of 2007, there were 2,980 operating petrochemical plants in 4,320 locations worldwide.<ref>[http://www.prlog.org/10011624-petrochemical-industry-worldwide.pdf Petrochemical Industry – Worldwide]</ref> The petrochemical end products from those plants include plastics, soaps, detergents, solvents, paints, drugs, fertilizer, pesticides, explosives, synthetic textile fibers and rubbers, flooring and insulating materials and much more. Petrochemicals are found in such common consumer products as aspirin, cars, clothing, compact discs, video tapes, electronic equipment, furniture, and a great many others.<ref>[http://www.npradc.org/docs/ourIndustry/petrochemicalFacts/petrochart.pdf Petrochemicals Chart] From the website of the [[National Petrochemical & Refiners Association]]</ref>

Revision as of 10:46, 3 July 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Gallery [?]
 
This editable, developed Main Article is subject to a disclaimer.

Petrochemicals are chemical products made from the hydrocarbons present in raw natural gas and petroleum crude oil. The largest petrochemical manufacturing industries are to be found in the United States, Western Europe, Asia and the Middle East.

A relatively small number of hydyrocarbon feedstocks form the basis of the petrochemical industries, namely methane, ethylene, propylene, butenes, butadiene, benzene, toluene and xylenes.[1][2]

As of 2007, there were 2,980 operating petrochemical plants in 4,320 locations worldwide.[3] The petrochemical end products from those plants include plastics, soaps, detergents, solvents, paints, drugs, fertilizer, pesticides, explosives, synthetic textile fibers and rubbers, flooring and insulating materials and much more. Petrochemicals are found in such common consumer products as aspirin, cars, clothing, compact discs, video tapes, electronic equipment, furniture, and a great many others.[4]

Feedstocks sources

(PD) Image: Milton Beychok
Petrochemical feedstock sources.

The major hydrocarbon sources used in producing petrochemicals are:[2][5][6]

Methane and BTX are used directly as feedstocks for producing petrochemicals. However, the ethane, propane, butanes, naphtha and gas oil serve as optional feedstocks for processing in steam-assisted thermal cracking plants known as steam crackers to produce these intermediate petrochemical feedstocks:

  • Ethylene
  • Propylene
  • Butenes and butadiene
  • Benzene

In 2007, the amounts of ethylene and propylene produced in steam crackers were about 115 Mt (megatonnes) and 70 Mt, respectively.[7] The output ethylene capacity of large steam crackers ranged up to as much as 1.0 – 1.5 Mt per year.[8][9]

The adjacent diagram depicts the all of the major petrochemical feedstocks and their sources.

Feedstocks and example petrochemical products

The table below includes some representative examples of the petrochemical end products produced from the eight hydrocarbon feedstocks – methane, ethylene, propylene, butenes, butadiene, benzene, toluene and xylenes:

Feedstocks and example petrochemical products
methane ethylene propylene butenes and butadienes benzene toluene xylenes
hydrogen polyethylene polypropylene styrene-butadiene rubber (SBR) styrene benzoic acid phthalic anhydride
ammonia ethanol isopropanol methyl tert-butyl ether (MTBE) polystyrene toluene diisocyanate polyesters
methanol ethylene glycol propylene glycol polybutadiene phenol polyurethanes dimethyl terephthalate
methyl chloride vinyl acetate allyl chloride acrylonitrile-butadiene-styrene (ABS) cumene caprolactam terephthalate acid
carbon black perchloroethylene acrylonitrile polybutenes aniline nylons polyethylene terephthalate
acetylene polyvinyl acetate acrylic acid methyl ethyl ketone (MEK) adipic acid polyureas dioctyl phthalate
formaldehyde glycol ethers epoxy resins tert-butanol nylons  

References

  1. Richard Meyers (2003). The Basics of Chemistry. Greenwood Press. ISBN 0-313-31664-3. 
  2. 2.0 2.1 Staff (March 2001). "Petrochemical Processes 2001". Hydrocarbon Processing: pp. 71-246. ISSN 0887-0284.
  3. Petrochemical Industry – Worldwide
  4. Petrochemicals Chart From the website of the National Petrochemical & Refiners Association
  5. SBS Polymer Supply Outlook
  6. Jean-Pierre Favennec (Editor) (2001). Petroleum Refining: Refinery Operation and Management. Editions Technip. ISBN 2-7108-0801-3. 
  7. Hassan E. Alfadala, G.V. Rex Reklaitis and Mahmoud M. El-Halwagi (Editors) (2009). Proceedings of the 1st Annual Gas Processing Symposium, Volume 1: January, 2009 - Qatar, 1st Edition. Elsevier Science, pp. 402-414. ISBN 0-444-53292-7. 
  8. Crackers capacities From the website of the Association of Petrochemicals Producers in Europe (APPE)
  9. Steam Cracking: Ethylene Production (PDF page 3 of 12 pages)