Virial theorem: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
imported>Paul Wormer
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
In [[mechanics]], a '''virial''' of a stable system of ''n'' particles is a quantity proposed by [[Rudolf Clausius]] in 1870.  The virial is defined by
In [[mechanics]], a '''virial''' of a stable system of ''n'' particles is a quantity proposed by [[Rudolf Clausius]] in 1870.<ref>R. Clausius, ''On Mechanical Theorem Appicable to Heat'', The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. '''40''', 4th series, pp. 122 &ndash; 127 (1870). [http://books.google.nl/books?id=GGAEAAAAYAAJ&pg=PA122&lpg=PA122&dq=R.+Clausius,+1870++%22On+a+Mechanical+Theorem+Applicable+to+Heat%22.+Philosophical+Magazine&source=bl&ots=R1r5qreADm&sig=2_mPQeatbLC3XRISgz5IUrfyhhk&hl=nl&ei=9HR5S6auDYaWtgeZlc2ZCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CAoQ6AEwAA#v=onepage&q=&f=false Google books]Note that Clausius still uses the term ''vis viva'' for kinetic energy, but does include the factor &frac12; in its definition.</ref>
The virial is defined by
:<math>
:<math>
\tfrac{1}{2} \sum_{i=1}^n  \mathbf{r}_i \cdot \mathbf{F}_i ,
\tfrac{1}{2} \sum_{i=1}^n  \mathbf{r}_i \cdot \mathbf{F}_i ,
Line 124: Line 125:


For instance, for a stable atom (consisting of charged particles with Coulomb interaction): ''k'' = &minus;1,  and hence 2&lang;''T'' &rang; = &minus;&lang;''V'' &rang;.
For instance, for a stable atom (consisting of charged particles with Coulomb interaction): ''k'' = &minus;1,  and hence 2&lang;''T'' &rang; = &minus;&lang;''V'' &rang;.
==Reference==
<references />

Revision as of 10:38, 15 February 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mechanics, a virial of a stable system of n particles is a quantity proposed by Rudolf Clausius in 1870.[1] The virial is defined by

where Fi is the total force acting on the i th particle and ri is the position of the i th particle; the dot stands for an inner product between the two 3-vectors. Indicate long-time averages by angular brackets. The importance of the virial arises from the virial theorem, which connects the long-time average of the virial to the long-time average ⟨ T ⟩ of the total kinetic energy T of the n-particle system,

Proof of the virial theorem

Consider the quantity G defined by

The vector pi is the momentum of particle i. Differentiate G with respect to time:

Use Newtons's second law and the definition of kinetic energy:

and it follows that

Averaging over time gives:

If the system is stable, G(t) at time t = 0 and at time t = T is finite. Hence, if T goes to infinity, the quantity on the right hand side goes to zero. Alternatively, if the system is periodic with period T, G(T) = G(0) and the right hand side will also vanish. Whatever the cause, we assume that the time average of the time derivative of G is zero, and hence

which proves the virial theorem.

Application

An interesting application arises when the potential V is of the form

where ai is some constant (independent of space and time).

An example of such potential is given by Hooke's law with k = 2 and Coulomb's law with k = −1. The force derived from a potential is

Consider

Hence

Then applying this for i = 1, … n,

For instance, for a system of charged particles interacting through a Coulomb interaction:

Quantum mechanics

The virial theorem holds also in quantum mechanics. Quantum mechanically the angular brackets do not indicate a time-average, but an expectation value with respect to an exact stationary eigenstate of the Hamiltonian of the system. The theorem will be proved and applied to the special case of a potential that has a rk-like dependence. Everywhere Planck's constant ℏ is taken to be one.

Let us consider a n-particle Hamiltonian of the form

where mj is the mass of the j-th particle. The momentum operator is

Using the self-adjointness of H and the definition of a commutator one has for an arbitrary operator G,

In order to obtain the virial theorem, we consider

Use

Define

Use

and we find

The quantum mechanical virial theorem follows

where ⟨ … ⟩ stands for an expectation value with respect to the exact eigenfunction Ψ of H.

If V is of the form

it follows that

From this:

For instance, for a stable atom (consisting of charged particles with Coulomb interaction): k = −1, and hence 2⟨T ⟩ = −⟨V ⟩.

Reference

  1. R. Clausius, On Mechanical Theorem Appicable to Heat, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 40, 4th series, pp. 122 – 127 (1870). Google books. Note that Clausius still uses the term vis viva for kinetic energy, but does include the factor ½ in its definition.