Cross product

From Citizendium
Revision as of 16:41, 9 October 2007 by imported>Hendra I. Nurdin (inserted determinant formula)
Jump to navigation Jump to search

The cross product, or vector product, is a type of vector multiplication in , and is widely used in many areas of mathematics and physics. In general Euclidean spaces there is another type of multiplication called the dot product ( or scalar product). Both the dot product and the cross product are widely used in in the study of optics, mechanics, electromagnetism, and gravitational fields, for example.

Definition

Given two vectors, A = (Ax,Ay,Az) and B = (Bx,By,Bz) in , the cross product is defined as the vector product of the magnitude of A, the magnitude of B, the sine of the smaller angle between them, and a unit vector (aN) that is perpendicular (or normal to) the plane containing vectors A and B and which follows the right-hand rule (see below).

A x B = aN |A||B|sinθAB


where and are, respectively, the magnitudes of A and B. See dot product for the evaluation of this equation.


Reversing the order of the vectors A and B results in a unit vector in the opposite direction, meaning that the cross product is not commutative, and thus:


B x A = -(A x B)

The cross product of any vector with itself (or another parallel vector) is zero because the sin(0) = 0.

A x A = 0


Another formulation

Rather than determining the angle and perpendicular unit vector to solve the cross product, the form below is often used to solve the cross product in .


A x B = (AyBz - AzBy)ax + (AzBx - AxBz)ay + (AxBy - AyBx)az,

where ax, ay and az are the orthogonal bases on which A and B have been defined. The above formula can be written more concisely in the following form:

where denotes the determinant of a matrix.