Treponema pallidum

From Citizendium
Revision as of 08:27, 22 April 2009 by imported>Amina Shaik (→‎Genome structure)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
All unapproved Citizendium articles may contain errors of fact, bias, grammar etc. A version of an article is unapproved unless it is marked as citable with a dedicated green template at the top of the page, as in this version of the 'Biology' article. Citable articles are intended to be of reasonably high quality. The participants in the Citizendium project make no representations about the reliability of Citizendium articles or, generally, their suitability for any purpose.

Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project in the framework of a course entitled Microbiology 201 at Queens College, CUNY. The course homepage can be found at CZ:Biol 201: General Microbiology.
For the course duration, the article is closed to outside editing. Of course you can always leave comments on the discussion page. The anticipated date of course completion is May 21, 2009. One month after that date at the latest, this notice shall be removed.
Besides, many other Citizendium articles welcome your collaboration!


Scientific classification


Description and significance

Genome structure

Treponema pallidium is a prokaryote with the smallest genome sequence. The organism has many processes that are similar and required for other organisms although it is dependent on the host for its survival. Like other eukaryotes it undergoes transcription, translation, replication, repair and has restriction- modification systems. Its genomic sequence is very close to that of Borrelia burgdorferi. B. Burgdorferi causes lyme disease in humans. The total genome sequence of the organism has 1,138,006 base pairs. The number of base pairs of the predicted coding sequences or of the number of open reading frames is 1041.

Inorder to repair DNA the T. Pallidium goes through methods such as uvr exision repair, mutL/mutS mismatch repair, mut Y and dat

It lacks type 4 topoisomerase that is involved in the process of chromosome segregation Chromosome segregation in T. Pallidium is able to occur by another mechanism that involves binding hemimethylated DNA to the cytoplasmic membrane. The spirochete T. Pallidium encodes for the homologs that are of the recF pathway thatare involved in recombination.

Cell structure and metabolism

Ecology

Pathology

Application to Biotechnology

Current Research

References

Treponema Pallidum is a spirochete bacteria that has two subspecies that cause human disease. These are T. pallidum subspecies pallidum, which causes venereal syphilis; and T. pallidum subspecies pertenue, which causes yaws. Both of these subspecies are members of the family, Spirochaetales, which also incudes the spirochetes Leptospira, the casue of the human disease, leptospirosis, and Borrelia, a genus of several species of spirochetes that cause the human diseases of relapsing fever and Lyme disease. Treponema pallidum is an unusual bacterium that is particularly parasitic. It lacks the enzymes of the Krebs cycle and oxidative phosphorylation, and transports many nutrients and structural substrates, such as amino acids and sugars, into its cytoplasm from its environment. This is one reason that the organism cannot live outside its host's body for any appreciable length of time and why infections must be transmitted through close contact.

Pathogenic subspecies of Treponema pallidum are very difficult to culture in the laboratory. Unlike most other bacteria that colonize and infect the human body, even special techniques for culture on artificial media are unsuccessful for the routine identification of these organisms. Instead, classically, dark field examination of a body fluid containing a large number of these spiral shaped motile bacteria was required for laboratory identification. More recently, PCR techniques are able to distinguish the organisms; this is especially helpful because both of the two subspecies of Treponema Pallidum, as well as other harmless species of Treponema look identical or similar under darkfield exam.

References

Sheila A. Lukehart. Chapter 153. "Syphilis" in Dennis L. Kasper, Eugene Braunwald, Anthony S. Fauci, Stephen L. Hauser, Dan L. Longo, J. Larry Jameson, and Kurt J. Isselbacher, Eds.Harrison's Principles of Internal Medicine, 16th Edition