Revision as of 10:02, 6 August 2009 by imported>Paul Wormer
In physics and mathematics, Wigner 3-jm symbols, also called 3j symbols,
are related to the Clebsch-Gordan coefficients of the groups SU(2) and SO(3) through
The 3j symbols show more symmetry in permutation of the labels than the corresponding Clebsch-Gordan coefficients.
Inverse relation
The inverse relation can be found by noting that j1 - j2 - m3 is an integral number and making the substitution
Symmetry properties
The symmetry properties of 3j symbols are more convenient than those of
Clebsch-Gordan coefficients. A 3j symbol is invariant under an even
permutation of its columns:
An odd permutation of the columns gives a phase factor:
Changing the sign of the quantum numbers also gives a phase:
Selection rules
The Wigner 3j is zero unless
, is integer, and .
Scalar invariant
The contraction of the product of three rotational states with a 3j symbol,
is invariant under rotations.
Orthogonality Relations
References
- E. P. Wigner, On the Matrices Which Reduce the Kronecker Products of Representations of Simply Reducible Groups, unpublished (1940). Reprinted in: L. C. Biedenharn and H. van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).
- A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Pinceton, 1960.
- D. M. Brink and G. R. Satchler, Angular Momentum, 3rd edition, Clarendon, Oxford, 1993.
- L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, volume 8 of Encyclopedia of Mathematics, Addison-Wesley, Reading, 1981.
- D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing Co., Singapore, 1988.