Group action
In mathematics, a group action is a relation between a group G and a set X in which the elements of G act as operations on the set.
Formally, a group action is a map from the Cartesian product , written as or or satisfying the following properties:
From these we deduce that , so that each group element acts as an invertible function on X, that is, as a permutation of X.
If we let denote the permutation associated with action by the group element , then the map from G to the symmetric group on X is a group homomorphism, and every group action arises in this way. We may speak of the action as a permutation representation of G. The kernel of the map A is also called the kernel of the action, and a faithful action is one with trivial kernel. Since we have
where K is the kernel of the action, there is no loss of generality in restricting consideration to faithful actions where convenient.
Examples
- Any group acts on any set by the trivial action in which .
- The symmetric group acts of X by permuting elements in the natural way.
- The automorphism group of an algebraic structure acts on the structure.