Bacillus megaterium: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Maleeha Aftab
imported>Maleeha Aftab
Line 68: Line 68:


'''Bacillus Megaterium''' is a prokaryotic cell, lacking membrane-bound organelles. It is a gram-positive, rod-shaped and found with other bacillus megaterium organisms. It is motile, with the use of its flagella. The cell wall, has large amounts of peptidoglycan. The flow of energy in cellular respiration is considered aerobic, but may undergo anaerobic conditions. They are like most gram-positive bacteria, that have the surface of Bacillus Megaterium, which is complex and is combined with their properties of resistance in extreme conditions, due to formation of spores. The cell surface is a laminated structure that consists of a capsule, a proteinaceous surface layer (S-layer), several layers of peptidoglycan sheeting, and the proteins on the outer surface of the plasma membrane. Also, plasmid content and cloning such as connecting many plasmids, rolling circle vectors that are stable, and efficient for secretion, and lacking extracellular alkaline proteases. However, large plasmids may be involved in horizontal gene transfer, such as integrase, recombinase, transposases, mobilization, and relaxase genes.  
'''Bacillus Megaterium''' is a prokaryotic cell, lacking membrane-bound organelles. It is a gram-positive, rod-shaped and found with other bacillus megaterium organisms. It is motile, with the use of its flagella. The cell wall, has large amounts of peptidoglycan. The flow of energy in cellular respiration is considered aerobic, but may undergo anaerobic conditions. They are like most gram-positive bacteria, that have the surface of Bacillus Megaterium, which is complex and is combined with their properties of resistance in extreme conditions, due to formation of spores. The cell surface is a laminated structure that consists of a capsule, a proteinaceous surface layer (S-layer), several layers of peptidoglycan sheeting, and the proteins on the outer surface of the plasma membrane. Also, plasmid content and cloning such as connecting many plasmids, rolling circle vectors that are stable, and efficient for secretion, and lacking extracellular alkaline proteases. However, large plasmids may be involved in horizontal gene transfer, such as integrase, recombinase, transposases, mobilization, and relaxase genes.  


Here is an image showing the Cell Structure of a Gram-Positive Bacillus Megaterium:  
Here is an image showing the Cell Structure of a Gram-Positive Bacillus Megaterium:  

Revision as of 00:27, 20 April 2008

Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project. If you are not involved with this project, please refrain from collaboratively developing it until this notice is removed.
Articles that lack this notice, including many Eduzendium ones, welcome your collaboration!



Classification

Here is a top-view image of a plate streaked with Bacillus Megaterium and incubated at room temperature for 24 hours.

http://www.microbelibrary.org/microbelibrary/files/ccImages/Articleimages/Atlas_LB/Bacillus%20megaterium%20TopView.jpg


Higher order taxa

'''Bacillus Megaterium'''

Kingdom: Bacteria

Phylum: Firmicutes

Class: Bacilli

Order: Bacillales

Family: Bacillaceae

Genus: Bacillus

Species: B. megaterium


Species

Genus: Bacillus

Description and significance

Bacillus Megaterium is a Gram Positive, Rod Shaped Endospore-Forming Bacteria. It is considered Aerobic, but, it is also capable of growing under anaerobic conditions when necessary. One of the largest Eubacteria found in soil, and hence the name “mega” means “relatively big” is a common soil saprophyte. A saprophyte is an organism, especially a fungus or bacterium, that lives on and gets its nourishment from dead organisms or decaying organic material. Saprophytes recycle organic material in the soil, breaking it down into in simpler compounds that can be taken up by other organisms. Bacillus Megaterium are also found in chains where the cells are joined together by polysaccharides on the cell walls and synthesizes a capsule composed of both polypeptide and polysaccharide. Bacillus Megaterium is also able to survive in extreme conditions such as desert environments due to the spores it forms.


Here are two images showing the structure and shape of each Bacillus Megaterium:

http://www.magma.ca/~scimat/B_mega101.jpg


http://dept.kent.edu/microbiology/images/bmeg.jpg

Genome structure

Bacillus Megaterium has been studied since the 1940's because it was one of the only species to have 100% of a culture sporulate as well as the ability to germinate at the same rate. It is about two times greater in volume compared to that of an E. coli. The larger  size has allowed several proteins to be successfully studied, along with further membrane research. Such research include that of Cell division, DNA-protein, protein-protein and protein-RNA interactions, protein transport, secretion, and recycling. The size comparison to most other Bacilli would be very interesting to study from a Genomic perspective.

Here is an image showing us the structure of a Bacillus Megaterium:

http://www.textbookofbacteriology.net/Bac.murein.jpeg

The single strain has been used for many studies on various aspects of spore physiology and cell wall structure. Some of the uses in the environmental and industrial applications are:

              * glucose dehydrogenase
              * penicillin aminidase
              * vitamin B12
              * oxetanocin
              * P450 cytochromes
              * biodegradation enzymes 

Here is an image showing us the different uses/ advances for our environmental and industrials needs:

http://www.bios.niu.edu/vary/bmeg_graphic.jpg

Cell structure and metabolism

Bacillus Megaterium is a prokaryotic cell, lacking membrane-bound organelles. It is a gram-positive, rod-shaped and found with other bacillus megaterium organisms. It is motile, with the use of its flagella. The cell wall, has large amounts of peptidoglycan. The flow of energy in cellular respiration is considered aerobic, but may undergo anaerobic conditions. They are like most gram-positive bacteria, that have the surface of Bacillus Megaterium, which is complex and is combined with their properties of resistance in extreme conditions, due to formation of spores. The cell surface is a laminated structure that consists of a capsule, a proteinaceous surface layer (S-layer), several layers of peptidoglycan sheeting, and the proteins on the outer surface of the plasma membrane. Also, plasmid content and cloning such as connecting many plasmids, rolling circle vectors that are stable, and efficient for secretion, and lacking extracellular alkaline proteases. However, large plasmids may be involved in horizontal gene transfer, such as integrase, recombinase, transposases, mobilization, and relaxase genes.

Here is an image showing the Cell Structure of a Gram-Positive Bacillus Megaterium:

http://www.textbookofbacteriology.net/B.anthracis.surface.EM.PI.jpeg

Ecology

Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.

Pathology

How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.

Application to Biotechnology

Does this organism produce any useful compounds or enzymes? What are they and how are they used?

Current Research

Enter summaries of the most recent research here--at least three required

References

[Sample reference] Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". International Journal of Systematic and Evolutionary Microbiology. 2000. Volume 50. p. 489-500.