Entire function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Richard Pinch
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== Definition==
{{subpages}}
{{under construction}}
In [[mathematical analysis]] and, in particular, in the [[theory of functions of complex variable]],
 
an '''entire function''' is a [[function (mathematics)|function]] that is [[holomorphic function|holomorphic]] in the whole [[complex plane]]
In the [[mathematical analysis]] and, in particular, in the [[theory of functions of complex variable]],
<ref name="john">{{cite book|first=John B.|last=Conway|authorlink=John B. Conway|year=1978|title=Functions of One Complex Variable I|edition=2nd edition|publisher=Springer|id=ISBN 0-387-90328-3}}</ref> <ref name="ralph">{{cite book|first=Ralph P.|last=Boas |year=1954|title=Entire Functions|publisher=Academic Press|id=OCLC 847696}}</ref>.
'''The entire function''' is [[finction(mathematics)|function]] that is [[holomorphic]] in the whole [[complex plane]]
<ref>
{{cite book|first=John B.|last=Conway|authorlink=John B. Conway|year=1978|title=Functions of One Complex Variable I|edition=2nd edition|publisher=Springer|id=ISBN 0-387-90328-3}}</ref><ref name="ralph">{{cite book
|first=Ralph P.
|last=Boas  
|uear=1954
|title=Entire Functions
|publisher=Academic Press
|id=OCLC 847696
}}</ref>.


==Examples==
==Examples==
===Entires===
===Entire functions===
Examples of '''entire functions''' are the [[polynomial]]s and the [[exponential]]s.
Examples of entire functions are [[polynomial]] and [[exponential]] functions.
All [[sum(mathematics)|sum]]s, [[product(mathematics)|product]]s and [[composition(,athematics)|composition]]s of these functions also are '''entire functions'''.
All [[sum (mathematics)|sum]]s, and [[product (mathematics)|product]]s of entire functions are entire, so that the entire functions form a '''C'''-algebra.  Further, [[Function composition|composition]]s of entire functions are also entire.


All the derivatives and some of integrals of entired funcitons, for example [[erf(function)|erf]], [[Integral sinus|Si]],
All the [[derivative]]s and some of the [[integral]]s of entire functions, for example the [[error function]] erf, [[sine integral]] Si and the [[Bessel function]] ''J''<sub>0</sub> are also entire functions.
[[Bessel function|<math>J_0</math>]], also are entired functions.


Every entire function can be represented as a [[power series]] or [[Tailor expansion]] which [[convergence (series)|converges]] everywhere.
===Non-entire functions===
===Non-entires===
In general, neither [[series(mathematics)|series]] nor [[limit(mathematics)|limit]] of a [[sequence(mathematics)|sequence]] of entire functions need be an entire function.
In general, neither [[series(mathematics)|series]] nor [[limit(mathematics)|limit]] of a [[sequence(mathematics)|sequence]] of entire funcitons needs to  be an entire function.


Inverse of an '''entire function''' has no need to be entire function. Usually, invetse of a non-trivial function is not entire.
The inverse of an '''entire function''' has need not be entire. Usually, inverse of a non-trivial function is not entire. (The inverse of a [[linear function]] is entire). In particular, inverses of [[trigonometric function]]s are not entire.
(The inverse of the [[linear function]] is entire). In particular, inverse of [[trigonometric function]]s are not entire.


More non-entire functions: [[rational function]] <math>~f(z)=\frac{a+b x}{c+x}~</math> at any complex
More non-entire functions: [[rational function]] <math>~f(z)=\frac{a+b x}{c+x}~</math> at any complex
Line 33: Line 20:
<math>~b~</math>,
<math>~b~</math>,
<math>~c~</math> ,
<math>~c~</math> ,
[[square root]], [[logarithm]], [[function Gamma]], [[tetration(mathematics)|tetration]].
[[square root]], [[logarithm]], [[function Gamma]], [[tetration]].


In particular, non-analytic functions also should be qualified as non-entire:
In particular, non-analytic functions also should be qualified as non-entire:
Line 39: Line 26:
[[imaginary part|<math>\Im</math>]],
[[imaginary part|<math>\Im</math>]],
[[complex conjugation]],
[[complex conjugation]],
[[modulus]],  
[[modulus of complex number|modulus]],  
[[argument]],  
[[argument of complex number|argument]],  
[[Dirichlet function]].
[[Dirichlet function]].


==Properties==
==Properties==
The entire functions have all general properties of other [[analytic functions]], but the infinite [[range of analyticity]]
enhances the set of the properties, making the entire functions especially [[beautiful (mathematics)|beautiful]] and attractive for applications.
===Power series===
The [[radius of convergence]] of a [[power series]] is the distance the nearest [[singularity (mathematics)|singularity]].  Therefore, it is infinite for entire functions.
'''Any entire function can be expanded in every point to the [[Taylor series]] which [[convergence (series)|converges]] everywhere'''.
This does not mean that one can always use the [[power series]] for precise [[evaluation]] of an entire function,
but helps a lot to [[proof (mathematics)|prove]] the [[theorem]]s.


===Infinitness===
===Unboundedness===
[[Liouville's theorem]] establishes an important property of entire functions &mdash; an entire function which is bounded must be constant <ref name="john">
[[Liouville's theorem]] states: '''an entire function which is bounded must be constant''' <ref name="john">
{{cite book|first=John B.|last=Conway|authorlink=John B. Conway|year=1978|title=Functions of One Complex Variable I|edition=2nd edition|publisher=Springer|id=ISBN 0-387-90328-3}}</ref>.
{{cite book|first=John B.|last=Conway|authorlink=John B. Conway|year=1978|title=Functions of One Complex Variable I|edition=2nd edition|publisher=Springer|id=ISBN 0-387-90328-3}}</ref>.
===Order of an entire function===
As all entire functions (except the constants) are unbounded, they grow as the argument become large, and can be characterised by their growth rate, which is called '''order'''.
Let <math>~f~</math> be entire function. Positive number
<math>~\alpha~</math> is called '''order''' of function
<math>~f~</math>, if for all positive numbers
<math>~\beta~</math>, larger than 
<math>~\alpha~</math>, there exist positive number
<math>~\rho~</math> such that  for all complex
<math>~z~</math> such that
<math>~|z|>\rho~</math>, the relation
<math>~|f(z)|<\exp\big(|z|^\beta\big)~</math> holds
<ref name="steven">{{cite book
|firsrt=Steven G.
|last=Krantz  <!-- |author=S.G. Krantz !-->
|title=Handbook of Complex Variables
|publisher= Boston, MA: Birkhäuser
|page=121
|year=1999
|isbn=0-8176-4011-8
}}</ref>.
In particular, all polynomials have order 0; the [[exponential]] has order 1; and [[erf]], as the [[Gaussian exponential]], has order 2.
===Range of values===
===Range of values===
[[Picard theorem|Picard's little theorem]] states: a non-constant entire function takes on every complex number as value, except possibly one <ref name="ralph">{{cite book
[[Picard theorem|Picard's little theorem]] states: '''a non-constant entire function takes on every complex number as value, except possibly one''' <ref name="ralph">{{cite book
|first=Ralph P.
|first=Ralph P.
last=Boas  
last=Boas  
|uear=1954
|year=1954
|title=Entire Functions
|title=Entire Functions
|publisher=Academic Press
|publisher=Academic Press
Line 60: Line 81:


For example, the [[exponential function|exponential]] never takes on the value 0.
For example, the [[exponential function|exponential]] never takes on the value 0.
===Cauchi integral===
 
===Cauchy integral===
<!-- I am not sure if this section should be here. Perhaps, it also should be separted article !-->
<!-- I am not sure if this section should be here. Perhaps, it also should be separted article !-->


Entire function <math>~f~</math>, at any complex <math>~z~</math> and at any contour '''C ''' evolving point <math>z</math>
Entire function <math>~f~</math>, at any complex <math>~z~</math> and at any contour '''C ''' enclosing the point <math>z</math> just once, can be expressed the  [[Cauchy theorem|Cauchy's theorem]]  
just once, can be expressed with [[Cauchi theorem]]  
<math>  
<math>  
f(x)=\frac{1}{2\pi {\rm i}} \oint_{\mathbf C} \frac{f(t)}{t-z} {\rm d}t
f(x)=\frac{1}{2\pi {\rm i}} \oint_{\mathbf C} \frac{f(t)}{t-z} {\rm d}t
</math>
</math>
Line 78: Line 99:
!-->
!-->


==See also==
 
*[[Cauchi formula]]
 
*[[Tailor series]]
==References==
==References==
<references/>
<!-- Wikipedia cites
<!-- Wikipedia cites
*
*
Line 87: Line 109:


but I wanted to cite more suitable source!-->
but I wanted to cite more suitable source!-->
{{stub|mathematics}}
[[Category:Mathematics]]
[[Category:Functions]]

Latest revision as of 14:44, 19 December 2008

This article is basically copied from an external source and has not been approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
The content on this page originated on Wikipedia and is yet to be significantly improved. Contributors are invited to replace and add material to make this an original article.

In mathematical analysis and, in particular, in the theory of functions of complex variable, an entire function is a function that is holomorphic in the whole complex plane [1] [2].

Examples

Entire functions

Examples of entire functions are polynomial and exponential functions. All sums, and products of entire functions are entire, so that the entire functions form a C-algebra. Further, compositions of entire functions are also entire.

All the derivatives and some of the integrals of entire functions, for example the error function erf, sine integral Si and the Bessel function J0 are also entire functions.

Non-entire functions

In general, neither series nor limit of a sequence of entire functions need be an entire function.

The inverse of an entire function has need not be entire. Usually, inverse of a non-trivial function is not entire. (The inverse of a linear function is entire). In particular, inverses of trigonometric functions are not entire.

More non-entire functions: rational function at any complex , , , square root, logarithm, function Gamma, tetration.

In particular, non-analytic functions also should be qualified as non-entire: , , complex conjugation, modulus, argument, Dirichlet function.

Properties

The entire functions have all general properties of other analytic functions, but the infinite range of analyticity enhances the set of the properties, making the entire functions especially beautiful and attractive for applications.

Power series

The radius of convergence of a power series is the distance the nearest singularity. Therefore, it is infinite for entire functions.

Any entire function can be expanded in every point to the Taylor series which converges everywhere.

This does not mean that one can always use the power series for precise evaluation of an entire function, but helps a lot to prove the theorems.

Unboundedness

Liouville's theorem states: an entire function which is bounded must be constant [1].

Order of an entire function

As all entire functions (except the constants) are unbounded, they grow as the argument become large, and can be characterised by their growth rate, which is called order.

Let be entire function. Positive number is called order of function , if for all positive numbers , larger than , there exist positive number such that for all complex such that , the relation holds [3].

In particular, all polynomials have order 0; the exponential has order 1; and erf, as the Gaussian exponential, has order 2.

Range of values

Picard's little theorem states: a non-constant entire function takes on every complex number as value, except possibly one [2].

For example, the exponential never takes on the value 0.

Cauchy integral

Entire function , at any complex and at any contour C enclosing the point just once, can be expressed the Cauchy's theorem



References

  1. 1.0 1.1 Conway, John B. (1978). Functions of One Complex Variable I, 2nd edition. Springer. ISBN 0-387-90328-3.  Cite error: Invalid <ref> tag; name "john" defined multiple times with different content
  2. 2.0 2.1 Boas, Ralph P. (1954). Entire Functions. Academic Press. OCLC 847696.  Cite error: Invalid <ref> tag; name "ralph" defined multiple times with different content
  3. Krantz (1999). Handbook of Complex Variables. Boston, MA: Birkhäuser. ISBN 0-8176-4011-8.