Parallel (geometry): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Boris Tsirelson
mNo edit summary
imported>Peter Schmitt
m (→‎Mathematical significance: typo (remove "e"))
 
(23 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
[[Image:Rail tracks @ Coina train station 04.jpg|thumb|250px|alt=Picture of railroad tracks.|Railroad tracks must be parallel to each other or else trains will derail.]]
[[Image:Rail tracks @ Coina train station 04.jpg|thumb|250px|alt=Picture of railroad tracks.|Straight railway tracks may be considered as segments of parallel lines, railway tracks with curves are parallel curves.]]
In [[Euclidean geometry]] two '''parallel''' (symbolized by two adjacent vertical lines '''∥''') lines in a [[Plane (geometry)|plane]] do not cross.  Two geometric entities (lines or planes) are said to be '''parallel''' if they do not [[intersect_(geometry)|intersect]] anywhere, that is, if they do not have a single point in common.  Thus, two [[line_(geometry)|lines]] are parallel if they belong to the same plane and do not cross at any [[point_(geometry)|point]], no matter how far.
More than one line may be parallel to any number of other lines, which all are parallel to one another. Writing ''PQ'' for a line connecting two different points ''P'' and ''Q'', this means
:<math>
\left.
\begin{align}
AB \parallel CD \\
CD \parallel EF \\
\end{align}
\right\}\,\Rightarrow\, AB \parallel EF
</math>
unless the lines ''AB'' and ''EF'' coincide. In other word, the relation ''to be parallel or coincide'' between lines is [[Transitive relation|transitive]].


Similarly two planes in a three-dimensional [[Euclidean space]] are said to be parallel if they do not intersect in any point. It can be proved that if they intersect in a point than they intersect in a line (or coincide). Writing ''PQR'' for a plane passing through three different point ''P'', ''Q'', and ''R'', transitivity may be written as follows:
According to the common explanation two straight lines in a [[plane (geometry)|plane]] are said to be  
:<math>
'''parallel''' (or ''parallel to each other'') if they do not meet (or intersect), i.e., do not have a point in common.
\left.
The term ''parallel'' is also used for [[line segment]]s that are part of parallel lines.
\begin{align}
 
ABC \parallel DEF \\
This definition is correct if (silently) the "natural" ([[Euclidean geometry|Euclidean]]) geometry is assumed.
DEF \parallel GHI \\
<br>
\end{align}
In it, the explicit condition "in a plane" is necessary because in space two straight lines that do not intersect need not be parallel.
\right\}\,\Rightarrow\, ABC \parallel GHI
Non-intersecting lines that do not belong to a common plane are called ''skew''.
</math>
 
unless the planes ''ABC'' and ''GHI'' coincide. In other word, the relation ''to be parallel or coincide'' between planes is also transitive.
Important properties of the notion "parallel" in Euclidean geometry are:
* ''(Uniqueness)'' Given a line then through any point (not on it) there is a uniquely determined line parallel to the given one.
* ''(Equidistant lines)'' Parallel lines have constant distance. <br> (This means, more precisely, that all distances from a point on one of them to the other line are the same.)
* ''(Transitivity)'' If among three distinct lines two pairs of lines are parallel then the third pair is also parallel.
'''Generalizations:''' <br>
* Analoguously, in three-dimensional space two planes, or a line and a plane, are said to be '''parallel''' if they do not intersect. <br> In this case, no additional condition is necessary because they always belong to the "same space". (This is different, of course, if, more generally (hyper-)planes in [[Euclidean space|higher-dimensional]] spaces are considered.)
* Equidistant curves in a plane are called [[parallel curve]]s.
* Similarly, the surface of a convex body and the surface of a [[parallel body]] are equidistant.
 
== Mathematical significance ==
 
The statement that, to a straight line, there is only one parallel through a point
plays an important role in the development of geometry and mathematics in general.
[[Euclid]] states it &mdash; somewhat disguised &mdash; in his ''[[Elements]]'' as his fifth (and last) postulate.
Therefore it is usually called the ''Parallel Postulate'' or ''Parallel Axiom''.
 
Since this statement is much less natural or evident than Euclid's other axioms and postulates,
mathematicians of all periods tried to prove it from the other assumptions, but in vain.
Only as late as the nineteenth century the reason became clear, namely, that it can be neither proven nor disproven
<small>([[Space (mathematics)#Before the golden age of geometry|Details]])</small>.
The statement is independent of the other axioms.
 
This discovery led to the development of an alternative geometry, that of the [[non-Euclidean geometry|non-Euclidean]] or ''hyperbolic'' plane
in which, to a given line and a point not on the line, there are infintely many non-intersecting lines tahrough this point.
Among these lines &mdash; usually also called ''parallels'' &mdash;
there are two boundary lines &mdash; called ''horoparallel'' (also ''limiting'', ''asymptotically'' or ''critically parallel'') &mdash;
that enclose the other parallels called ''hyperparallel'' (or ''ultra-parallel'').
Some authors reserve the word "parallel" for the two exceptional lines.
 
While Newton's [[classical mechanic]]s is based on Euclidean geometry,
Einstein's [[relativity theory]] showed that physical space &mdash; while locally Euclidean &mdash; is not Euclidean in the large.
 
== Mathematical properties ==
 
In mathematical formulas, "''is parallel to''" is usually denoted by the symbol &nbsp; ∥ &nbsp; (Unicode U+2225)
&mdash; two parallel vertical lines &mdash; and its negation "''is not parallel to''" by &nbsp; ∦ &nbsp; (Unicode U+2226).
 
Thus, for two straight lines ''f'' and ''g'', and for four points ''A,B,C,D''
:<math> f \parallel g  \qquad \textrm{and} \qquad  AB \parallel CD </math>
mean that the lines ''f'' and ''g'', and the line segments determined by ''AB'' and ''CD'', respectively, are parallel.
 
=== Binary relation ===
 
<math> \parallel </math> is a [[binary relation]] on the set of straight lines.
 
In mathematics, it is usual to define &mdash; in addition to the common meaning &mdash; that any line is parallel to itself.
<br>
This convention is convenient in the following statements (transitivity, parallel through a point).
 
The relation <math> \parallel </math> is an [[equivalence relation]]:
* <math>\textrm{ (reflexivity)  }\quad\  g \parallel g </math>
* <math>\textrm{ (symmetry)    }\quad\ g_1 \parallel g_2 \Leftrightarrow g_2 \parallel g_1 </math>
* <math>\textrm{ (transitivity) }\quad  g_1 \parallel g_2 \quad\textrm{and}\quad g_2 \parallel g_3 \Rightarrow g_1 \parallel g_3 </math>
 
The [[Parallel Axiom]] consists of the following two statements:
 
* For all points ''P'' and all lines ''g'' there is a parallel line ''h'' through ''P'':
: <math> (\forall g,P) (\exists h) P \in h, h \parallel g </math>
and
* Any two lines parallel to ''g'' and through ''P'' are the same:
: <math> P \in h_1,h_2 \quad\textrm{and}\quad h_1\parallel g, h_2 \parallel g \Rightarrow h_1 = h_2  </math>
 
 
These statements remain true if (instead of straight lines) the set of line segments, or the set of all planes is considered.
<br>
However, transitivity and the uniqueness of a parallel fail when lines and planes are considered simultaneously.
They also fail in the non-Euclidean case, of course.

Latest revision as of 05:23, 17 April 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Picture of railroad tracks.
Straight railway tracks may be considered as segments of parallel lines, railway tracks with curves are parallel curves.

According to the common explanation two straight lines in a plane are said to be parallel (or parallel to each other) if they do not meet (or intersect), i.e., do not have a point in common. The term parallel is also used for line segments that are part of parallel lines.

This definition is correct if (silently) the "natural" (Euclidean) geometry is assumed.
In it, the explicit condition "in a plane" is necessary because in space two straight lines that do not intersect need not be parallel. Non-intersecting lines that do not belong to a common plane are called skew.

Important properties of the notion "parallel" in Euclidean geometry are:

  • (Uniqueness) Given a line then through any point (not on it) there is a uniquely determined line parallel to the given one.
  • (Equidistant lines) Parallel lines have constant distance.
    (This means, more precisely, that all distances from a point on one of them to the other line are the same.)
  • (Transitivity) If among three distinct lines two pairs of lines are parallel then the third pair is also parallel.

Generalizations:

  • Analoguously, in three-dimensional space two planes, or a line and a plane, are said to be parallel if they do not intersect.
    In this case, no additional condition is necessary because they always belong to the "same space". (This is different, of course, if, more generally (hyper-)planes in higher-dimensional spaces are considered.)
  • Equidistant curves in a plane are called parallel curves.
  • Similarly, the surface of a convex body and the surface of a parallel body are equidistant.

Mathematical significance

The statement that, to a straight line, there is only one parallel through a point plays an important role in the development of geometry and mathematics in general. Euclid states it — somewhat disguised — in his Elements as his fifth (and last) postulate. Therefore it is usually called the Parallel Postulate or Parallel Axiom.

Since this statement is much less natural or evident than Euclid's other axioms and postulates, mathematicians of all periods tried to prove it from the other assumptions, but in vain. Only as late as the nineteenth century the reason became clear, namely, that it can be neither proven nor disproven (Details). The statement is independent of the other axioms.

This discovery led to the development of an alternative geometry, that of the non-Euclidean or hyperbolic plane in which, to a given line and a point not on the line, there are infintely many non-intersecting lines tahrough this point. Among these lines — usually also called parallels — there are two boundary lines — called horoparallel (also limiting, asymptotically or critically parallel) — that enclose the other parallels called hyperparallel (or ultra-parallel). Some authors reserve the word "parallel" for the two exceptional lines.

While Newton's classical mechanics is based on Euclidean geometry, Einstein's relativity theory showed that physical space — while locally Euclidean — is not Euclidean in the large.

Mathematical properties

In mathematical formulas, "is parallel to" is usually denoted by the symbol   ∥   (Unicode U+2225) — two parallel vertical lines — and its negation "is not parallel to" by   ∦   (Unicode U+2226).

Thus, for two straight lines f and g, and for four points A,B,C,D

mean that the lines f and g, and the line segments determined by AB and CD, respectively, are parallel.

Binary relation

is a binary relation on the set of straight lines.

In mathematics, it is usual to define — in addition to the common meaning — that any line is parallel to itself.
This convention is convenient in the following statements (transitivity, parallel through a point).

The relation is an equivalence relation:

The Parallel Axiom consists of the following two statements:

  • For all points P and all lines g there is a parallel line h through P:

and

  • Any two lines parallel to g and through P are the same:


These statements remain true if (instead of straight lines) the set of line segments, or the set of all planes is considered.
However, transitivity and the uniqueness of a parallel fail when lines and planes are considered simultaneously. They also fail in the non-Euclidean case, of course.