Parvovirus: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John J. Dennehy
imported>Meg Taylor
m (spelling: resevoirs -> reservoirs)
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
{{EZarticle-closed-auto‎}}
{{Taxobox | color=violet
{{Taxobox | color=violet
| name = Parvovirus genus
| name = Parvovirus  
| image = cpvsmall.jpg
| virus_group = II
| virus_group = II
| familia = ''[[Parvoviridae]]''
| familia = ''[[Parvoviridae]]''
Line 11: Line 10:
}}
}}


'''''Parvovirus''''' is a genus of the family ''[[Parvoviridae]]''.<ref>{{cite web |url=http://www.nlm.nih.gov/cgi/mesh/2007/MB_cgi?mode=&term=Parvovirus |title=Parvovirus |accessdate=2007-11-02 |author=National Library of Medicine |authorlink= |coauthors= |date= |format= |work= |publisher= |pages= |language= |archiveurl= |archivedate= |quote=}}</ref> Parvoviruses causes disease in animals, but not humans. ''Parvovirus B19'', which causes various diseases in humans, is a member of the ''[[Erythrovirus]]'' genus of ''[[Parvoviridae]]'' rather than ''Parvovirus''.<ref name="pmid14762186">{{cite journal |author=Young NS, Brown KE |title=Parvovirus B19 |journal=N. Engl. J. Med. |volume=350 |issue=6 |pages=586–97 |year=2004 |pmid=14762186 |doi=10.1056/NEJMra030840 |issn=}}</ref>


[[Image:cpvsmall.jpg]]


[[Image:parvo3d.jpg]]
==Introduction==
'''''Canine Parvovirus''''' has two types. This article addresses only type-II.  Canine parvovirus causes disease in animals, but not humans. ''Parvovirus B19'', which causes various diseases in humans, is a member of the ''[[Erythrovirus]]'' genus of ''[[Parvoviridae]]'' rather than ''Parvovirus''.


==In canines==
CPV-2 is a highly contagious virus affecting members of the family ''Canidae''.  Members would include domestic dogs, coyotes, wolves, and foxes.  The virus is spread through direct or indirect contact with infected feces.  Possible reservoirs for CPV-2 would include be shoes, paws, cages/carriers, and even soilThe virus can lie dormant on the ground for long periods of time (1+ years). It is resistant to much environmental conditions such as low pH and high temperatures.
Parvovirus is highly contagious, airborne and deadly; it can run through [[kennel]]s very quickly, causing an agonizing death for domestic dogsIt can lie dormant on the ground for long periods of time, and can be picked up on one's shoes.  
===Prevention===
[[Vaccination]] against parvovirus is standard and required in Australia.  Some veterinary professionals routinely disinfect or change shoes when leaving the surgery and before getting into their vehicles or stepping onto their property.
 
When parvovirus has already been contracted by animals on one's property, dusting and washing surfaces with lime has been shown to be effective.
===Treatment===


[[Image:parvo3d.jpg]]


 
 
   
==Description and significance==
Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced. Describe how and where it was isolated.
Include a picture or two (with sources) if you can find them.


==Genome structure==
==Genome structure==
Describe the size and content of the genome. How many chromosomes?  Circular or linear?  Other interesting features?  What is known about its sequence?
The genome of a canine parvovirus isolate strain (CPV-N) is 5,323 nucleotides in length. The terminal repeat at the 3' end of the genome shared similar structural characteristics but limited homology with the rodent parvoviruses. The 5' terminal repeat was not detected in any of the clones. Instead, a region of DNA starting near the capsid gene stop codon and extending 248 base pairs into the coding region had been duplicated and inserted 75 base pairs downstream from the poly(A) addition site. Consensus sequences for the 5' donor and 3' acceptor sites as well as promotors and poly(A) addition sites were identified and compared with the available information on related parvoviruses. The genomic organization of CPV-N is similar to that of feline parvovirus (FPV) in that there are two major open reading frames (668 and 722 amino acids) in the plus strand (mRNA polarity). Both coding domains are in the same frame, and no significant open reading frames were apparent in any of the other frames of both minus and plus DNA strands. The nucleotide and amino acid homologies of the capsid genes between CPV-N and FPV were 98 and 99%, respectively. In contrast, the nucleotide and amino acid homologies of the capsid genes for CPV-N and CPV-b (S. Rhode III, J. Virol. 54:630-633, 1985) were 95 and 98%, respectively. These results indicate that very few nucleotide or amino acid changes differentiate the antigenic and host range specificity of FPV and CPV.<ref>Reed, Jones, and Miller. ''"Nucleotide sequence and genome organization of canine parvovirus."''J Virol. 1988 January; 62(1): 266–276.</ref>
Does it have any plasmids?  Are they important to the organism's lifestyle?
 
Parvovirus genome is linear, monopartite, ss DNA of approximately 5 kb in size. Most of the packaged strands of DNA are minus-sense, but the adeno-associated viruses package equal amounts of plus and minus sense DNA. The genome also has palindromic sequences at both the 3' and 5' ends which can fold back on themselves to form "hairpin" structures that are stabilized by self-hydrogen bonding.
 
Parvovirus replication and assembly occurs in the nucleus and is dependent upon host cellular functions. The hairpin structure at the 3' end is used as a self-primer to start synthesis of a plus-sense DNA, resulting in double stranded-DNA. The hairpin structure is then again used as a primer to transcribe more minus-sense strands from the ds DNA. The current model proposes that the growing strand replicates back on itself to produce a tetrameric form which is then cleaved to result in two plus-sense and two minus-sense strands of DNA.
==Cell structure==
 
[[Image:Canine_parvovirus_Samp_k8797o.jpg |250 px|right]]
==Cell structure and metabolism==
Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
 
Infectious virions of canine parvovirus contain 60 protein subunits that are predominantly VP-2. The central structural motif of VP-2 has the same topology (an eight-stranded antiparallel beta barrel) as has been found in many other icosahedral viruses but represents only about one-third of the capsid protein. There is a 22 angstrom (A) long protrusion on the threefold axes, a 15 A deep canyon circulating about each of the five cylindrical structures at the fivefold axes, and a 15 A deep depression at the twofold axes. By analogy with rhinoviruses, the canyon may be the site of receptor attachment. Residues related to the antigenic properties of the virus are found on the threefold protrusions. Some of the amino termini of VP-2 run to the exterior in full but not empty virions, which is consistent with the observation that some VP-2 polypeptides in full particles can be cleaved by trypsin. Eleven nucleotides are seen in each of 60 symmetry-related pockets on the interior surface of the capsid and together account for 13 percent of the genome.
Infectious virions of canine parvovirus contain 60 protein subunits that are predominantly VP-2. The central structural motif of VP-2 has the same topology (an eight-stranded antiparallel beta barrel) as has been found in many other icosahedral viruses but represents only about one-third of the capsid protein. There is a 22 angstrom (A) long protrusion on the threefold axes, a 15 A deep canyon circulating about each of the five cylindrical structures at the fivefold axes, and a 15 A deep depression at the twofold axes. By analogy with rhinoviruses, the canyon may be the site of receptor attachment. Residues related to the antigenic properties of the virus are found on the threefold protrusions. Some of the amino termini of VP-2 run to the exterior in full but not empty virions, which is consistent with the observation that some VP-2 polypeptides in full particles can be cleaved by trypsin. Eleven nucleotides are seen in each of 60 symmetry-related pockets on the interior surface of the capsid and together account for 13 percent of the genome.
==Infection==
CPV results in two forms of infection: intestinal and cardiac.  Puppies 6 to 16 weeks are most susceptible to CPV.  Most cases involves puppies under the age of 6 months, with the most severe cases seen in puppies under the age of 12 weeks.  The severity of the disease is worse with factors such as stress, concurrent infections, and poor hygiene. Certain breeds, such as Rottweilers, Doberman Pinchers, English Springer Spaniels, and black and tan colored dogs may be more susceptible to CPV. CPV sheds into the stool in 3-4 days after infection, for a period of 2-3 weeks.


==Ecology==
====Intestinal====
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.
The intestinal form is also known as enteritis.  CPV infects rapidly dividing cells in the intestine, bone marrow, and lymphatic tissues.  CPV results in necrosis (cell death) of the intestinal crypts, leading to massive blood and protein loss.  White blood cell count is reduced; both lymphocytes and neutrophils are affected (these are types of white blood cells).  


==Pathology==
====Cardiac====
How does this organism cause disease? Human, animal, plant hosts? Virulence factors, as well as patient symptoms.
The second form of CPV is the cardiac form. It is rare and usually only affects puppies to up 8 weeks of age. This form of CPV attacks the heart of the puppy and causes difficulty in breathing. The puppy often dies suddenly or after a brief period of breathing difficulty.


==Application to Biotechnology==
==Symptoms==
Does this organism produce any useful compounds or enzymes? What are they and how are they used?
Symptoms of intestinal form are depression, lethargy, loss of appetite, vomiting, fever, dehydration and bloody diarrhea.  Severe symptoms include severe dehydration, electrolyte imbalances, hypoglycemia, anemia, hypoalbumineia, hypothermia, and septic shock or overwhelming secondary bacterial infection due to low numbers of protective white blood cells. In the most severe case, death can follow.


==Current Research==
The cardiac form will not produce similar symptoms as the intestinal form.  Since it attacks the heart muscle, a major sign is difficulty in breathing.


Enter summaries of the most recent research here--at least three required


==Treatment==
There is no specific anitiviral treatment for CPV.  Treatment must be administered early on to ensure successful recovery.  Rehydration is the first step of treatment. Healing and defense require that we promote a proper blood flow to all tissues. The rate of fluid replacement is tailored to the amount of fluid losses from vomiting and diarrhea.  Dextrose and potassium chloride are frequently added to the fluids to encourage increased vascular volume and to replenish total body potassium depletion.  Antibiotics are also administered to help with the low white blood cell count.  Whole bllod transfusions may be required in cases of severe bloody diarrhea. It is important to know that even with hospitalization, there is no guarantee that the dog will survive.
==Prevention==
Vaccination is vital to ensure the health of the dog from this virulent disease.  Newborn puppies receives their immunity from their mother’s first milk, the colostrum, on the first day of life. This special milk contains the mother’s antibodies against CPV and until these antibodies wane to ineffective levels, they will protect the puppy. Puppies at 8 weeks of age should receive an initial modified dosage of CPV vaccine from a licenced veterinarian, followed by 2 more shots of the modified vaccine until the puppy is around the age of 16 weeks.  It is recommended that dogs should receive CPV vaccines annually. 
==References==
==References==
[Sample reference] [http://ijs.sgmjournals.org/cgi/reprint/50/2/489 Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "''Palaeococcus ferrophilus'' gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". ''International Journal of Systematic and Evolutionary Microbiology''. 2000. Volume 50. p. 489-500.]
<references/>


[http://www.sciencemag.org/cgi/content/abstract/251/5000/1456 J Tsao, MS Chapman, M Agbandje, W Keller, K Smith, H Wu, M Luo, TJ Smith, MG Rossmann, RW Compans, and al. et  "The three-dimensional structure of canine parvovirus and its functional implications ". ''Science''. 1991. Vol 251. Issue 5000. p. 1456-1464.]
[http://www.sciencemag.org/cgi/content/abstract/251/5000/1456 J Tsao, MS Chapman, M Agbandje, W Keller, K Smith, H Wu, M Luo, TJ Smith, MG Rossmann, RW Compans, and al. et  "The three-dimensional structure of canine parvovirus and its functional implications ". ''Science''. 1991. Vol 251. Issue 5000. p. 1456-1464.]


[http://virus.stanford.edu/parvo/parvovirus.html Megha Mathakia "PARVOVIRUS". 1998]
[http://virus.stanford.edu/parvo/parvovirus.html Megha Mathakia "PARVOVIRUS". 1998.]
 
[http://searchwarp.com/swa303317.htm Skellenger "Canine Parvovirus (CPV)". 2008.]

Latest revision as of 00:59, 12 February 2010

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Parvovirus
Cpvsmall.jpg
Virus classification
Group: Group II (ssDNA)
Family: Parvoviridae
Genus: Parvovirus
Species: Canine parvovirus 2


Introduction

Canine Parvovirus has two types. This article addresses only type-II. Canine parvovirus causes disease in animals, but not humans. Parvovirus B19, which causes various diseases in humans, is a member of the Erythrovirus genus of Parvoviridae rather than Parvovirus.

CPV-2 is a highly contagious virus affecting members of the family Canidae. Members would include domestic dogs, coyotes, wolves, and foxes. The virus is spread through direct or indirect contact with infected feces. Possible reservoirs for CPV-2 would include be shoes, paws, cages/carriers, and even soil. The virus can lie dormant on the ground for long periods of time (1+ years). It is resistant to much environmental conditions such as low pH and high temperatures.

Parvo3d.jpg



Genome structure

The genome of a canine parvovirus isolate strain (CPV-N) is 5,323 nucleotides in length. The terminal repeat at the 3' end of the genome shared similar structural characteristics but limited homology with the rodent parvoviruses. The 5' terminal repeat was not detected in any of the clones. Instead, a region of DNA starting near the capsid gene stop codon and extending 248 base pairs into the coding region had been duplicated and inserted 75 base pairs downstream from the poly(A) addition site. Consensus sequences for the 5' donor and 3' acceptor sites as well as promotors and poly(A) addition sites were identified and compared with the available information on related parvoviruses. The genomic organization of CPV-N is similar to that of feline parvovirus (FPV) in that there are two major open reading frames (668 and 722 amino acids) in the plus strand (mRNA polarity). Both coding domains are in the same frame, and no significant open reading frames were apparent in any of the other frames of both minus and plus DNA strands. The nucleotide and amino acid homologies of the capsid genes between CPV-N and FPV were 98 and 99%, respectively. In contrast, the nucleotide and amino acid homologies of the capsid genes for CPV-N and CPV-b (S. Rhode III, J. Virol. 54:630-633, 1985) were 95 and 98%, respectively. These results indicate that very few nucleotide or amino acid changes differentiate the antigenic and host range specificity of FPV and CPV.[1]



Cell structure

Canine parvovirus Samp k8797o.jpg

Infectious virions of canine parvovirus contain 60 protein subunits that are predominantly VP-2. The central structural motif of VP-2 has the same topology (an eight-stranded antiparallel beta barrel) as has been found in many other icosahedral viruses but represents only about one-third of the capsid protein. There is a 22 angstrom (A) long protrusion on the threefold axes, a 15 A deep canyon circulating about each of the five cylindrical structures at the fivefold axes, and a 15 A deep depression at the twofold axes. By analogy with rhinoviruses, the canyon may be the site of receptor attachment. Residues related to the antigenic properties of the virus are found on the threefold protrusions. Some of the amino termini of VP-2 run to the exterior in full but not empty virions, which is consistent with the observation that some VP-2 polypeptides in full particles can be cleaved by trypsin. Eleven nucleotides are seen in each of 60 symmetry-related pockets on the interior surface of the capsid and together account for 13 percent of the genome.



Infection

CPV results in two forms of infection: intestinal and cardiac. Puppies 6 to 16 weeks are most susceptible to CPV. Most cases involves puppies under the age of 6 months, with the most severe cases seen in puppies under the age of 12 weeks. The severity of the disease is worse with factors such as stress, concurrent infections, and poor hygiene. Certain breeds, such as Rottweilers, Doberman Pinchers, English Springer Spaniels, and black and tan colored dogs may be more susceptible to CPV. CPV sheds into the stool in 3-4 days after infection, for a period of 2-3 weeks.

Intestinal

The intestinal form is also known as enteritis. CPV infects rapidly dividing cells in the intestine, bone marrow, and lymphatic tissues. CPV results in necrosis (cell death) of the intestinal crypts, leading to massive blood and protein loss. White blood cell count is reduced; both lymphocytes and neutrophils are affected (these are types of white blood cells).

Cardiac

The second form of CPV is the cardiac form. It is rare and usually only affects puppies to up 8 weeks of age. This form of CPV attacks the heart of the puppy and causes difficulty in breathing. The puppy often dies suddenly or after a brief period of breathing difficulty.

Symptoms

Symptoms of intestinal form are depression, lethargy, loss of appetite, vomiting, fever, dehydration and bloody diarrhea. Severe symptoms include severe dehydration, electrolyte imbalances, hypoglycemia, anemia, hypoalbumineia, hypothermia, and septic shock or overwhelming secondary bacterial infection due to low numbers of protective white blood cells. In the most severe case, death can follow.

The cardiac form will not produce similar symptoms as the intestinal form. Since it attacks the heart muscle, a major sign is difficulty in breathing.


Treatment

There is no specific anitiviral treatment for CPV. Treatment must be administered early on to ensure successful recovery. Rehydration is the first step of treatment. Healing and defense require that we promote a proper blood flow to all tissues. The rate of fluid replacement is tailored to the amount of fluid losses from vomiting and diarrhea. Dextrose and potassium chloride are frequently added to the fluids to encourage increased vascular volume and to replenish total body potassium depletion. Antibiotics are also administered to help with the low white blood cell count. Whole bllod transfusions may be required in cases of severe bloody diarrhea. It is important to know that even with hospitalization, there is no guarantee that the dog will survive.



Prevention

Vaccination is vital to ensure the health of the dog from this virulent disease. Newborn puppies receives their immunity from their mother’s first milk, the colostrum, on the first day of life. This special milk contains the mother’s antibodies against CPV and until these antibodies wane to ineffective levels, they will protect the puppy. Puppies at 8 weeks of age should receive an initial modified dosage of CPV vaccine from a licenced veterinarian, followed by 2 more shots of the modified vaccine until the puppy is around the age of 16 weeks. It is recommended that dogs should receive CPV vaccines annually.



References

  1. Reed, Jones, and Miller. "Nucleotide sequence and genome organization of canine parvovirus."J Virol. 1988 January; 62(1): 266–276.

J Tsao, MS Chapman, M Agbandje, W Keller, K Smith, H Wu, M Luo, TJ Smith, MG Rossmann, RW Compans, and al. et "The three-dimensional structure of canine parvovirus and its functional implications ". Science. 1991. Vol 251. Issue 5000. p. 1456-1464.

Megha Mathakia "PARVOVIRUS". 1998.

Skellenger "Canine Parvovirus (CPV)". 2008.