Lucas sequence: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
mNo edit summary
imported>Karsten Meyer
mNo edit summary
Line 3: Line 3:
There exist two kinds of Lucas sequences:
There exist two kinds of Lucas sequences:
*Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>,
*Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>,
*Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=a^n+b^n\ </math>,
*Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle V_n(P,Q)=a^n+b^n\ </math>,


where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions  
where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions  

Revision as of 08:07, 17 November 2007

Lucas sequences are a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. These sequences have one common characteristic: they can be generated over quadratic equations of the form: .

There exist two kinds of Lucas sequences:

  • Sequences with ,
  • Sequences with ,

where and are the solutions

and

of the quadratic equation .

Properties

  • The variables and , and the parameter and are interdependent. In particular, and .
  • For every sequence it holds that and .
  • For every sequence is holds that and .

For every Lucas sequence the following are true:

  • for all

Fibonacci numbers and Lucas numbers

The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .

Lucas sequences and the prime numbers

If the natural number is a prime number then it holds that

  • divides
  • divides

Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .

The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.

Further reading