imported>Hendra I. Nurdin |
imported>Karsten Meyer |
Line 3: |
Line 3: |
| There exist two kinds of Lucas sequences: | | There exist two kinds of Lucas sequences: |
| *Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>, | | *Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>, |
| *Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle U_n(P,Q)=a^n+b^n\ </math>, | | *Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 1}</math> with <math>\scriptstyle V_n(P,Q)=a^n+b^n\ </math>, |
|
| |
|
| where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions | | where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions |
Revision as of 08:07, 17 November 2007
Lucas sequences are a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. These sequences have one common characteristic: they can be generated over quadratic equations of the form: .
There exist two kinds of Lucas sequences:
- Sequences with ,
- Sequences with ,
where and are the solutions
and
of the quadratic equation .
Properties
- The variables and , and the parameter and are interdependent. In particular, and .
- For every sequence it holds that and .
- For every sequence is holds that and .
For every Lucas sequence the following are true:
- for all
Fibonacci numbers and Lucas numbers
The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .
Lucas sequences and the prime numbers
If the natural number is a prime number then it holds that
- divides
- divides
Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .
The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.
Further reading